
Exploring the Security Issues of Trusted
CA Certificate Management

Yanduo Fu1,2,3, Qiongxiao Wang1,2(B), Jingqiang Lin4,5, Aozhuo Sun1,2,
and Linli Lu1,3

1 State Key Laboratory of Information Security, Institute of Information
Engineering, CAS,Beijing 100089, China

wangqiongxiao@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing 100089, China
3 Data Assurance and Communication Security Research Center, CAS,

Beijing, China
4 School of Cyber Security, University of Science and Technology of China,

Hefei 230027, Anhui, China
5 Beijing Institute, University of Science and Technology of China,

Beijing, China

Abstract. Public Key Infrastructure (PKI) is widely used in security
protocols, and the root certification authority (CA) plays a role as the
trust anchor of PKI. However, as researches show, not all root CAs
are trustworthy and malicious CAs might issue fraudulent certificates,
which can cause Man-in-the-Middle attacks and eavesdropping attacks.
Besides, massive CAs and CA certificates make it hard for users to man-
age the CA certificates by themselves. Though PKI applications generally
provide the implementation of trusted CA certificate management (called
CA manager in this paper) to store, manage, and verify CA certificates,
security incidents still exist, and a malicious CA certificate can damage
the entire security. This work explores the security issues of CA man-
agers for three popular operating systems and eight applications installed
on them. We make a systematic analysis of the CA managers, such as
the modification of the certificate trust list, the source of trust, and
the security check of the CA certificates, and propose the functionalities
that a CA manager should have. Our work shows that all CA managers
we analyzed have security issues, e.g., silent addition of CA certificates,
inefficient validation on CA certificates, which will result in insecure CA
certificates being falsely trusted. We also make some suggestions on the
security enhancement for CA managers.

Keywords: Certification authority · Public key infrastructure · CA
certificate management

1 Introduction

Public key infrastructure (PKI) plays a critical role in secure networking, offer-
ing security functionalities such as confidentiality, data integrity, and authen-
c� Springer Nature Switzerland AG 2021
D. Gao et al. (Eds.): ICICS 2021, LNCS 12918, pp. 384–401, 2021.
https://doi.org/10.1007/978-3-030-86890-1_22



Exploring the Security Issues of Trusted CA Certificate Management 385

tication. Well-known applications based on PKI include but are not limited to
TLS, HTTPS, code signing, eSign documents, S/MIME, and OpenID Connect.
Research [15] shows that as of March 2020, more than 60% of the top one million
websites in Alexa have used HTTPS, and the number of PKI deployments is still
growing.
The security of a PKI system is based on a secure and trustworthy root certi-

fication authority (CA). Authoritative organizations such as WebTrust [30] will
audit public CAs to ensure their legitimacy and security. However, not all CAs
(including public CAs and unaudited self-built CAs) are trustworthy. Recent
researches and events have shown that due to malicious attacks or misbehaviors,
CAs might issue fraudulent certificates [10,12], which may cause Man-in-the-
Middle (MITM) attacks or phishing attacks to the users. The common way to
realize a PKI system is that users need to choose which CA can be trusted. A
user can trust and accept an end-entity certificate based on the trust of the root
CA. While if a root CA is not trusted by the verifier, any certificate issued by
this CA cannot be trusted.
Since there are a large number of CA companies and the quantity of root

CA certificates is much larger, users even with professional knowledge cannot
identify the trustiness of each CA certificate by themselves [6,7,9]. According
to statistics from Censys [21], there have been more than 68 million self-signed
CA certificates, and 88% are unexpired. Many applications, such as Windows,
macOS, Firefox, and Acrobat, have integrated with trusted CA certificate man-
agement to help the users with certificate verification and storage. Some of them
also offer preset Certificate Trust List (CTL), which usually contains the glob-
ally trusted root CA certificates and some platform/application specified root
CA certificates. When a root CA certificate is added to the local CTL, all the
certificates issued by it can be accepted.
Previous researches have disclosed the security incidents caused by the

improperly preset CTL. Lenovo shipped some laptops with a pre-installed traffic
scanning software called Superfish [3] in 2014, which installed a CA certificate
and then actually injected advertisements to even encrypted web pages through
a MITM attack. The same private key across laptops made things worse as a
third-party entity could interpret or modify encrypted traffic without triggering
any security warnings. Besides the preset CTL, if a trusted CA certificate can
be added to local CTL arbitrarily, the security problem mentioned above still
exists [1,5,8,32].
In this paper, we focus on the implementation of trusted CA certificate man-

agement integrated with operating systems (OSs) and applications to explore the
security issues of trusted CA certificate management. For simplicity, we refer to
the implementation of trusted CA certificate management as a “CA manager,”
which focuses on the local management of CA certificates such as the modifica-
tion of the CTL, the storage of local certificate files, and the security check of CA
certificates. Our work is accomplished by exploring the CA managers on three
OSs (i.e., Windows, macOS, and Linux) and eight applications (i.e., seven Web
Browsers and Adobe Acrobat) installed on these OSs, which are carefully chosen



386 Y. Fu et al.

according to the market share and security features. We find that all the CA
managers we studied have some security issues. For example, we find that there
is no requirement for explicit participation of the user (e.g., inputting a pass-
word) while importing a CA certificate to the local CTL of some CA managers
(e.g., Windows), which means malicious CA certificates can be installed silently
and the attackers can even accomplish the addition by replacing the CTL files
with a file including malicious CA certificates. Besides, some CA managers have
a weak verification on the certificate security and key usage (or certificate pur-
pose) of the CA certificate, and some CA managers (e.g., Firefox) do not verify
the complete certificate chain when trusting an intermediate CA certificate.
The main contributions are the followings:

1) We investigate the most popular desktop OSs and PKI applications (e.g., web
browsers) for studying the implementation and the use of CA managers. We
propose the functionalities a CA manager should have.

2) We conduct a comprehensive test on different CA managers from the per-
spective of the source of trust, modification to the local CTL, control of the
certificate purpose, and security check of CA certificates. Several security
issues are disclosed and described in this paper.

3) Based on the security issues we found, we make some suggestions to enhance
the security of the CA managers.

The rest of this paper is organized as follows. Related work is introduced in
Sect. 2. In Sect. 3 we explore the CA managers in the wild, including the source
of trust and the functionalities. Section 4 specifies our method for analyzing the
CA managers and reports the security issues we found. We give our suggestions
in Sect. 5 and offer the conclusions of the paper in Sect. 6.

2 Related Work

In recent years, CA managers have been analyzed extensively. Some researches
have exposed many security issues of the CA managers, and several organizations
also develop a root store (or root program), which contains the preset CTL. In
the meantime, there have been some schemes proposed for specific situations.

Schemes for CA Manager. Many well-known organizations (such as
Microsoft [25], Mozilla [27], Apple [16], and Adobe [14]) maintain their CTLs
and root stores for global users. A CA intending to be included in these lists
must comply with the baseline requirements of the CA/Browser Forum [19,20].
Besides, it should be audited by European Telecommunications Standards Insti-
tute (ETSI) [22] or WebTrust [30] to ensure its security and legality. These CA
certificates will be installed by default in the OSs and applications and are con-
sidered secure and trustworthy enough to be used to provide users with security
services.
Besides, due to the arbitrary addition of CA certificates and the lack of secu-

rity knowledge of users, some researchers have introduced some new technologies



Exploring the Security Issues of Trusted CA Certificate Management 387

for improvements based on the current CA managers. Li et al. [11] propose a
locally-centralized CA certificate management solution named vCertGuard in
private cloud environments combined with desktop virtualization technology
characteristics that realize centralized CA management by a professional admin-
istrator based on the granularity of trust. CA-TMS [4] proposes a CA reputation
evaluation system based on a computational trust model, which determines the
number of trusted CA certificates and decision-making rules by learning the
browser’s certificate-related parameters and the users’ behavior habits.

Terrible Situations of CA Manager. Some researches have revealed the
terrible situations of the current CA managers. Perl et al. [13] surveyed the
local CTL of eleven OSs or applications, finding that 34% CAs in the root
store were not used to sign HTTPS server certificates and can be removed to
reduce the attack interface without triggering any security warnings in browsers.
Vallina-Rodriguez et al. [32] analyzed the CTLs of thousands of Android devices
installed by hardware vendors, mobile operators, and Android OS, finding that
the Android CAs have no distinction between trust levels and no restrictions on
the purpose of the certificate and the rooted applications might install malicious
CA certificates without any barriers. Besides, it was found that some manu-
facturers [2,3] would pre-install some insecure CA certificates, which caused
severe security problems. Malicious CA certificates can also be imported by audio
drivers [31], antivirus and parental-control software [5], and programming [1].
These works have made a huge contribution to the security of CA managers.

However, there is no study analyzing the specific implementation of current
CA managers, and we focus on this part, exploring the security issues of CA
managers.

3 CA Manager in the Wild

This section specifies the studied target objects and then elaborates their actual
situation in the wild from two perspectives: source of trust and functionality of
the CA manager.

3.1 Target Object

Our research is based on the most mainstream desktop OSs, including Windows,
Linux, and macOS. The specific version is Windows 10 Professional, Ubuntu
16.04 with Linux kernel 4.15.0, and macOS High Sierra 10.13.6.

OS. The OS generally maintains a system-level local CTL shared by all accounts
in the same machine, and each account maintains a user-level local CTL, which
will not affect other users in this machine. We treat them as two different CTLs
for analysis in the following. Note that two system-level local CTL exists in
macOS. One CTL stores the system-level CA certificates which can be mod-
ified at any time by users, and the other CTL stores the original CA certifi-
cates maintained by Apple, which is referred to as “root-level” CTL in this



388 Y. Fu et al.

paper. For Ubuntu, it stores the system-level CTL in the system directory (i.e.,
/usr/share/ca-certificates/), and the CTL, which is stored in the .pki folder under
the user directory, is considered as user-level CTL in this paper.

Application.We investigate several PKI applications containing seven desktop
browsers and one PDF reader named Adobe Acrobat DC (Acrobat). The seven
browsers consist of the top six desktop browsers (i.e., Chrome, Safari, Edge,
Firefox, Opera, and IE), which are ranked by market share in StatCounter [29]
during the last 12months, and the Tor browser (Tor), which is known for its
open-source, anonymity and privacy technologies. Table 1 shows the specific ver-
sion of applications. It is worth noting that two different installation methods in
Ubuntu need to be considered: (a) the apt, which gets the applications from the
Ubuntu repositories; and (b) the snap, which is cross-platform, dependency-free,
and more secure than apt.
We also conduct experiments on Windows 7 Ultimate and CentOS 8.3 with

Linux kernel 4.18.0. Windows 7 has similar experiment phenomena with Win-
dows 10. CentOS is different from Ubuntu in the addition and storage location
of the system-level CTL. CentOS stores the CTLs in /usr/share/pki/ca-trust-
source and /etc./pki/ca-trust/source. Many browsers including Firefox will trust
the certificates in the two folders, while the Tor browser and the applications
installed by snap maintain their own CTLs. Overall, CentOS is similar to Ubuntu
in terms of addition, storage security, and verification of certificate security. The
following mainly introduces Windows 10, macOS 10.13.6, and Ubuntu 16.04.

Table 1. The version number of applications studied

App
OS

Windows macOS
Linux

Via snap Via apt

Chrome 87.0.4280.88 87.0.4280.88 � 87.0.4280.88
Safari � 13.1.2 � �
Edge 87.0.664.55 87.0.664.60 � 89.0.723.0
Firefox 83 83 83 83
Opera 76.0.4017.123 76.0.4017.123 76.0.4017.123 76.0.4017.123
IE 11.630.19041.0 � � �
Tor 10.0.15 10.0.15 � 10.0.15
Acrobat 2019.021.20061 2019.021.20058 2020.013.20064 �
�: It indicates that the OS does not support the installation of the
application.

Challenge. (i) There is no unified standard and specification for the CA man-
ager. Different OS platforms have various policies and methods for managing
CTLs, which makes it necessary to employ several unique processing and obser-
vation methods. For example, Windows OS manages the local CTL using Group
Policy, and we can access and modify the CA certificates in the CTL through the



Exploring the Security Issues of Trusted CA Certificate Management 389

user interface; while in Ubuntu, each CA certificate is stored as a separate file,
and we can only modify the CTL by moving the file. (ii) The internal implemen-
tation logic of the applications’ local CA managers is different and opaque. In
order to explore the vulnerabilities of the CA manager, it is necessary to design
numerous black box testings. For example, to study the security check of CA
certificate and the use of CA certificate purpose, we create a website and a doc-
ument, generate many CA certificates with insecure fields and special certificate
purpose, and conduct various tests on each browser and Acrobat separately. (iii)
Different CA managers may have various forms of unpredictable phenomena for
the same test case. Therefore, many parts of the experiment require manual
intervention, making it difficult to automate. For example, importing a CA cer-
tificate through the user interface to the user-level CTL requires no password but
shows the information about the certificate on Windows, while the system-level
CTL requires the administrator’s permission without a password and shows no
notification about the addition. We have to perform experiments manually on
each surveyed object and record the results.

3.2 Exploring the Source of Trust

In a PKI system, OSs and applications generally configure a preset CTL as
their source of trust. The preset CTLs of our target objects mainly originate
from the four mainstream platforms, namely Microsoft, Mozilla, Apple, and
Adobe. Among them, Microsoft and Apple maintain the local CTL by them-
selves, Mozilla root store is a part of the Network Security Services (NSS)
cryptographic library [28], and Adobe manages the Adobe Approved Trust List
(AATL) by itself and regards European Union Trusted Lists (EUTL) as a third-
party source. The number of CA certificates in each CTL is shown in Table 2,
which is obtained on April 2021.

Table 2. The widely acknowledged CTLs

Platform Quantity CTL

Microsoft 417 Microsoft Included CA Certificate List [24]

Mozilla 142 Mozilla Included CA Certificate List [26]

Apple 217 Apple Included CA Certificate [17]

Adobe 246 AATL [14] & EUTL [23]

To figure out the local default source of each OS and application, we carry
out a systematic exploration of the CA managers. Then, we classify the target
objects’ management mode of their local CTL into two categories: Global Level
(global-level) and Application Level. Table 3 shows the source of trust and the
category of each manager.



390 Y. Fu et al.

Table 3. The source of trust and the category of each CA manager

OS CA manager Source of trust Category

Microsoft Apple Mozilla Adobe

Windows System-level/User-level
√

– – – �

Chrome
√

– – – ∓
Edge

√
– – – ∓

Opera
√

– – – ∓
IE

√
– – – ∓

Firefox – –
√

– �
Tor – –

√
– �

Acrobat – – –
√ �

macOS System-level/User-level –
√

– – �

Chrome –
√

– – ∓
Edge –

√
– – ∓

Safari –
√

– – ∓
Opera –

√
– – ∓

Firefox – –
√

– �
Tor – –

√
– �

Acrobat – – –
√ �

Linux System-level/User-level – –
√

– �

Install via snap Firefox – –
√

– �
Opera – –

√
– �

Acrobat – – –
√ �

Install via apt Chrome – –
√

– ∓
Firefox – –

√
– �

Opera – –
√

– ∓
Edge – –

√
– ∓

Tor – –
√

– �
�: Global level. �: Application level. ∓: Use global-level CA manager from
OS.

Global Level. At the Global Level, CA managers maintain a global-level CTL,
including user-level CTL and system-level CTL, and can be modified by any
authorized entities. The modification to the global-level CTL will affect all the
entities trusting it. Specifically, OSs maintain a local CTL on the computer as a
system-level CTL that can be trusted directly by some applications (see Table 3
for details). Besides, some browsers installed via apt package in Ubuntu jointly
trust a user-level CTL from Mozilla located in the .pki folder under the user
directory. Note that the applications that trust the global-level CTL actually do
not have an independent CAmanager, and they use the third-party CAmanagers
directly, which are provided by the user-level CTL of the OS by default, according
to our observation.



Exploring the Security Issues of Trusted CA Certificate Management 391

Application Level. At the Application Level, each CA manager maintains
its own CTL, which can only be used and modified by itself. The preset CTL
can be customized or originate from mainstream platforms. For instance, every
browser installed by snap in Ubuntu will occupy a separate folder to store the
CTL deriving from Mozilla. Tor, Firefox, and Acrobat manage their CTLs on
their own, and they can decide whether to put extra trust in the OS’s CTL or
not by preferences. But the extra trust in Ubuntu is not valid according to our
experiments.

3.3 Exploring the Functionalities of CA Manager

Once the CA manager obtains the preset CTL from the source of trust, the
CTL can be modified by entities (e.g., users, system, application, etc.) for some
usage, as shown in Fig. 1. According to the requirements of the audit agency,
such as WebTrust and ETSI, baseline requirements of CA/Browser Forum and
our operation, and our observation of each CA manager, we conclude that the
CA manager should possess the functionalities including but not limited to the
followings.

Fig. 1. Overview of the CA manager

Storage Protection. CA manager should store the local CTL and the corre-
sponding trust relationship of these CA certificates in the form of a file locally.
The storage of the local CTL should be sufficiently secure, and it should be pro-
tected by a security mechanism (such as digital signature and authority man-
agement) and not be modified and moved arbitrarily. Moreover, even the file is
replaced, the trust relationship of the maliciously replaced CA certificate will
not change with the replacement.

Modifying CTL. The CTL can be modified through the user interface and
the command line, and users can customize their local CTL. The allowed oper-
ations include adding, deleting, and blocking the CA certificate. In particular,
the adding operation should require the explicit participation of the user for
security, such as inputting the user’s password.



392 Y. Fu et al.

Restricting CA Certificate Usage. The usage of CA certificates should be
restricted. By default, an added CA certificate cannot be used for any purpose,
and users can specify the required CA certificate purpose to be available, which
cannot exceed the purposes specified by the key usage and extended key usage
(EKU).

Security Audit. Whenever a CA certificate is added or used, it should be
checked for security, such as validity period, revocation status, certificate pur-
pose, key size, supported cipher suites, and hash algorithms used. For insecure
CA certificates, the CA managers should display a security warning on the user
interface.

Isolation. Different accounts (or applications) on the same computer should
maintain their local CTLs without affecting each other. However, the OSs main-
tain a system-level CTL shared by all accounts, which is contrary to isolation.
In this case, the system-level CTL should not be modified arbitrarily.

Updating CTL. The CA manager should provide the functionality of updating
the local CTL from the source of trust automatically or manually. In this way,
the CA manager can obtain the latest CTL timely when the source of trust adds
or blocks some CA certificates. This functionality can exist independently or as
a part of an overall update of the OS or the applications.

4 Security Analysis on CA Manager

In this section, we conduct a comprehensive security analysis on the CA man-
agers with a systematic and customized experiment method. Our work for the
local CA managers mainly concerns the modifications of the local CTL, security
checks of CA certificate, restrictions and inspections of CA certificate purposes,
and some problems are found during the processes. We elaborate on the disclosed
problems and make a detailed analysis separately in the end.

For simplicity, we hide the applications that do not have a CA manager in
the following tables. Their behaviors are the same as the user-level CA manager.

4.1 Methodology

Given the diversity of experimental scenarios, our methodology is mainly cate-
gorized into two parts, the black box testing and manual alteration of CTL.

Black Box Testing. It is applied for three purposes, including security checks of
CA certificates, inspections of CA certificate purpose, and the verification policy
of the certificate chain. To prepare for our experiments, we utilize OpenSSL
1.1.1 to generate various self-signed root CA certificates with different fields,
and create the corresponding three-tier certificate chains. Besides, we build a



Exploring the Security Issues of Trusted CA Certificate Management 393

website using Apache and sign some PDF documents to check the CA managers
of browsers and Acrobat.
Among these self-signed root CA certificates with security risks which are

used for checking the security of CA certificate, some employ weak hash algo-
rithms such as MD5 and SHA-1, or weak key pairs such as RSA-512, RSA-
1024, and ECC-192, and others have disparate certificate purposes (especially
the EKU) for the inspections of the key usage. Moreover, expired CAs are also
considered. For the sake of eliminating interference factors from other irrelevant
aspects, the other certificates in those three-tier certificate chains adopt identical
and secure algorithms, specifically, RSA-4096 and SHA-256.

Manual Alteration of CTL. This method places emphasis on the operations
of importing new CA certificates to the existing CTLs and replacing the CTL
file with another file. To achieve our goals, we import our root CA certificates
which are secure enough to the local CTL of each CA manager using the user
interface or the command line and make them trusted. Meanwhile, we record
the required authorities and prompt messages in the process. Besides, we try
to replace the CTL file with another file that has the same format and can be
identified by the CA manager, observe and record the behaviors of the local CA
managers.

4.2 Silent Addition of CA Certificate

Generally, importing a new CA certificate to the local CTL requires the user’s
knowledge or/and involvement, such as system prompt message or/and password
authentication. However, an attacker can maliciously revise the CTL without
the user’s awareness, such as bypassing the prompt message and adding a CA
certificate or directly replacing unprotected files through a malicious program
when asking users to install software or drivers [1,5,8]. In our experiment, we
adopt the method of manually altering the CTL and find there are several cases
demonstrating that a local CTL can be modified silently.

No Password Required for Addition.When adding a new CA certificate to
the local CTL and making it trusted, we figure out that the CA managers of
Windows, all browsers except Tor, and Acrobat do not require password authen-
tication. Worse still, the system prompt messages can also be bypassed by pro-
grams, which has already been disclosed in related research [1].
These issues make it easy for attackers to add malicious or insecure CA cer-

tificates to the local CTL arbitrarily in silence. Once a malicious CA is trusted,
all certificates issued by it will be used with complete trust, which may result
in severe results, such as launching man-in-the-middle attacks, monitoring the
behavior of the user’s computer, injecting advertisements into the user’s com-
puter, or legally installing malicious software. Besides, when we install Alipay’s
security controls, we also find that the application installed several CA certifi-
cates in our Windows without any prompt of certificate information and adding
quantity, which may leave the user in a monitored state.



394 Y. Fu et al.

Table 4. Silent addition of CA certificate

OS CA manager Vulnerability¶

Authority Password Storage

Windows User-level • • �
System-level ◦ • �
Firefox • • ⊗
Tor ∗ ∗ �
Acrobat • • ⊗

macOS User-level ◦ ◦ �
System-level ◦ ◦ �
Root-level ∗ ∗ �
Firefox • • ⊗
Tor ∗ ∗ �
Acrobat • • ⊗

Linux Ca-certificates (system-level) ◦ ◦ �
.pki (user-level) • • ⊗
Firefox (via snap/apt) • • ⊗
Opera (via snap) • • ⊗
Tor (via apt) ∗ ∗ �
Acrobat (via snap) • • ⊗

¶: Authority means whether the administrator’s authority is required; Password
means the administrator’s password is required; Storage means whether the
CTL file is protected.
◦ means this feature is required, while • means this feature is not required, and
∗ means this CA manager does not support the functionality of addition.
� means the trust relationship or the file itself cannot be replaced, while ⊗
means this trust relationship can be changed by replacing the file.

Malicious Replacement of CTL File. Since the CTL file generally stores
many CA certificates and the corresponding trust relationship, it is significantly
important to maintain its security. Nevertheless, our experiment reveals that
Acrobat and browsers that trust raw CTL of Mozilla, excluding Tor, can replace
the existing CTL file with another file coming from a disparate machine, and it
only requires the current account’s authorities and shows no security warning.
Meanwhile, the trust relationship in the new CTL file is taken too, which means
the trust relationship in the old CTL file is replaced. Consequently, attackers can
use this physical method (which can also be achieved by programming) to add
many malicious CA certificates to the local CTL without the user’s knowledge,
which may pose a more severe threat than adding CA certificates randomly.
Besides, implementations of some current CA managers may cause the con-

sequences of these issues to be more serious, which are the followings:



Exploring the Security Issues of Trusted CA Certificate Management 395

a) Security Issues of Shared CTL. There are local CTLs shared by several
applications on each OS. A malicious CA certificate added to the global-level
CTL will be trusted by these applications, which increases the influence scope of
risk. Besides, due to the dependence of trust, the applications may not perform
any certificate verification but directly trust the global-level CTL, which shows
no support for isolation.
b) Possible Failure in Deleting and Blocking the CA certificates. The
CA certificates in the CA managers of Windows and Acrobat can restore auto-
matically with the update after deletion. Since every CA manager can update
its preset CTL, it is difficult for us to delete these CA certificates thoroughly
in some CA managers. There are also some managers that do not support the
blacklist. For example, Tor does not allow users to make any modifications to
the CA manager for security. The system-level CTL of Ubuntu is allowed to
cancel the trust of the CA certificates, but this certificate can be added again
and trusted. The user may want to cancel the trust of malicious CA certificates,
but the automatic recovery mechanism and ineffective blocking make it difficult.
We try to add secure CA certificates and replace files in various OSs and

applications, and experiment results are shown in Table 4, including the required
authorities during addition and the protection of the CTL file. In summary, we
can spot that Acrobat, most browsers, and Windows OS lack a good security
mechanism for modifications to CTL. The management methods of Ubuntu and
macOS are worth learning.

4.3 Non-strict Security Check of CA Certificate

As required by CA/Browser Forum [19], MD5, SHA-1, RSA with a key size
fewer than 2048 bits, and ECC with a key size fewer than 256 bits are viewed
as insecure or not recommended. CA managers are expected to check these
fields. To observe the security check of each CA manager, we employ the black
box testing and use a three-tier certificate chain to do the experiments. We
import the insecure root CA certificates to the local CTL and attempt to visit
the website using browsers or verify the document signatures using Acrobat,
whose end-entity certificate is issued by one of the insecure CAs. We record
the behaviors of different CA managers, including warning messages on the user
interface and application verification results. Besides, as mentioned in Sect. 4.1,
the intermediate CA certificates and end-entity certificates are secure and valid.
To determine the certificate verification policies of these CA managers, only

the intermediate CA certificates are added to the CTL and trusted, and we check
whether the CA manager verifies the complete certificate chain or not.
For global-level CTLs, we observe the behaviors through the applications

trusting their CTL, such as Safari in macOS. The system-level CTL of Ubuntu
stores the certificates and trust status but does not provide verification functions.
Many command lines such as wget and curl will trust and use the certificates,
and the verification policy mainly depends on the cryptographic libraries such
as OpenSSL and NSS. We only display the results of wget with OpenSSL. Tor
and the root-level CTL of macOS are not considered in this section.



396 Y. Fu et al.

False Trust in CA Certificate with Insecure Fields. During our experi-
ment, it is indicated that only the CA managers of the macOS consider MD5
to be insecure, and ECC-192 is regarded as secure except for the browsers that
trust Mozilla’s CTL. In addition, SHA-1 and RSA-1024 are thought as secure in
all CA managers. Acrobat can verify the signature of any end-entity certificates
issued by insecure CA, as long as the CA certificate is imported and trusted.
All of these situations should not happen and need to be warned by the CA
managers. But only the CA managers of Windows and macOS show the security
warnings for the insecure CA certificates in the user interface. Such CA certifi-
cates have great potential to be exploited by attackers. For instance, if a CA
certificate uses MD5 as the hash algorithm, the attacker already has the ability
to forge it with the same hash value. And if a CA certificate encrypts a message
with a public key whose length is no longer considered secure, it will be under
the risk that the information can be cracked in a limited time. Any of these can
pose a great threat to the security of applications, OSs, and users. We reported
to Mozilla the issue of not checking the MD5 algorithm in a trusted CA certifi-
cate and got a response. They stated that if the certificate was trusted by the
user, the security of the digest algorithm would not be verified.

Table 5. Trust status of every CA manager for insecure root CA certificate∗

OS CA manager SHA-1 MD5 RSA-512 RSA-1024 ECC-192 Expired

Inter Root Inter Root Inter Root Inter Root Inter Root Inter Root

Windows User-level1,2 ⊕ � ⊕ � ⊕ ⊕3 ⊕ � ⊕ � ⊕ ⊕3

System-level1,2 ⊕ � ⊕ � ⊕ ⊕3 ⊕ � ⊕ � ⊕ ⊕3

Firefox � � � � ⊕ ⊕ � � � ⊕ � ⊕
Acrobat � � � � � � � � � � � �

macOS User-level1,2 ⊕ � ⊕3 ⊕3 ⊕ ⊕3 ⊕ � ⊕ � ⊕ ⊕3

System-level1,2 ⊕ � ⊕3 ⊕3 ⊕ ⊕3 ⊕ � ⊕ � ⊕ ⊕3

Firefox � � � � ⊕ ⊕ � � � ⊕ � ⊕
Acrobat � � � � � � � � � � � �

Linux Ca-certificates (system-level)2 ⊕ � ⊕ � ⊕ ⊕ ⊕ � ⊕ � ⊕ ⊕
.pki (user-level) � � � � ⊕ ⊕ � � � ⊕ � �
Firefox via snap/apt � � � � ⊕ ⊕ � � � ⊕ � ⊕
Opera via snap � � � � ⊕ ⊕ � � � ⊕ � �
Acrobat via snap � � � � � � � � � � � �

�: (Intermediate) CA certificate is trusted. ⊕: (Intermediate) CA certificate is not trusted.
∗: Inter indicates that only the intermediate CA certificate with RSA-1096 and SHA-256 is added to the CTL
and set as trusted. Root indicates that the root CA certificate is added to the CTL and form a complete trusted
certificate chain.
1: This CA manager has a user interface to show the security warning.
2: This CA manager verifies the complete certificate chain.
3: The user interface shows this root CA certificate is insecure.

Incomplete Verification of Certificate Chain. Due to the different policies
of certification path validation between CA managers, some CA managers will
not verify the complete certificate chain and stop verifying the rest certificates
of the chain when they encounter a trusted CA certificate (not necessarily a
root CA certificate). With only the intermediate CA certificates added into the
CTL, we retry the above tests and find that CA managers of Acrobat, Firefox,
and other applications (except Tor) that trust Mozilla’s CTL in Ubuntu do not



Exploring the Security Issues of Trusted CA Certificate Management 397

verify the complete certificate chain. For example, when we trust an intermedi-
ate CA certificate issued by a root CA using ECC-192 or an expired CA (the
intermediate CA certificate is issued during the validity of the root CA and is
secure enough), the website can still be accessed successfully in Firefox. Since
the incomplete verification of certificate chains can cause some insecure CA cer-
tificates to bypass the verification, the risk of the non-strict security check is
much larger.
The results are displayed in Table 5. It shows the behaviors of various CA

managers for different insecure fields in the certificate. In particular, CA man-
agers with user interfaces also show us the trust status of the CA manager. The
results of different verification policies are also displayed. In general, we can
see that many managers make no warnings about the insecure fields. Insecure
CA certificates with weak algorithms weaken the security and may bring unde-
tectable attacks to users, and the risks may be larger if the certificate chain is
incompletely validated.

4.4 Potential Abuse of CA Certificate Purpose

The CA certificate usually contains several fields for specifying the certificate
purpose, such as Key Usage and Extended Key Usage, and the certificate should
be used for the purpose for which it is intended. CA managers may have their
unique methods to process the certificate purpose. For example, as EKU is not
required, a CA manager (e.g., Windows) may consider that a certificate without
the EKU field has all the certificate purposes, which include the ones to manage
the OS and can be abused to tamper with or attack the OS. Furthermore, CA
managers (e.g., Firefox) can also provide some commonly used certificate purpose
options on its user interface for authorized users to choose manually, such as
verifying websites and emails. We will describe in detail later. These purposes
may not exist in the certificate purpose field, resulting in inconsistent certificate
purposes. To explore the verification of the certificate purpose, we add the self-
created CA certificate to each CA manager and observe their behaviors.

Loose Verification on CA Certificate Purpose. Our findings manifest that
different OSs vary greatly in verification on certificate purposes of CAs. The
certificate purpose selected by the user on the user interface may be inconsistent
with the actual key usage of the CA certificate. For macOS, it behaves as if it
does not verify the key usage and EKU of the CA certificate after we import
the self-created CA with an EKU Timestamp only to its CTL. If the key usage
of SSL is selected in the user interface, we can still visit the website successfully
whose end-entity certificate is issued by the CA normally. This issue can lead
to the abuse of CA certificates, which may cause some malicious CA certificates
to issue fraudulent certificates and have a great impact on the local users. We
reported that macOS had the issue of inconsistent certificate purposes to apple
and had not received a response yet.

No Restriction on CA Certificate Purpose. For Windows, when the EKU
field of a CA certificate is empty, any purposes in the EKU list are selected



398 Y. Fu et al.

and allowed, including some system’s functionalities such as Windows Update
and Microsoft Trust List Signing. In our work, we create a CTL using a CA
certificate with the corresponding EKU and successfully add it to the local CTL
in Windows. Then all CAs in this CTL are directly trusted. Besides, we find that
no additional prompt or authentication is required for importing a CA certificate
with such a special purpose. Attackers can inject such a CA certificate and a
CTL signed by it through programs, which can add a set of CA certificates to
the user’s computer at one time. The malicious CA certificates with such high-
privileged certificate purposes can always pass the verification, which can cause
a significant impact on users.

5 Suggestions for Secure CA Manager

Based on the above problems of the CA managers, we put forward the following
suggestions for building a more secure CA manager.

User Participation during Modification. When modifying the local CTL,
especially when a new CA certificate is imported, the user’s participation is nec-
essary, and the need for a password is a recommended way, which can reduce the
risk of being tampered with by malicious entities. For example, the system-level
CTL and user-level CTL of macOS and system-level CTL of Ubuntu stored
in /usr/share/ca-certificates/ need the administrator’s password for addition,
which is considered secure. Furthermore, it is recommended that displaying an
explicit prompt when new CA certificates are imported to the CTL, which can
tell the users about the target local CTL and the specific information and the
quantity of the CA certificates. Therefore, users can be aware of what has hap-
pened and take action to ensure its security.
Meanwhile, deleting or blocking the insecure CA certificates should also be

allowed and supported by CA managers so that users can cancel the trust of
some certificates permanently. For example, when a user discovers a vulnerability
caused by a CA certificate and that the certificate also exists in his computer,
he should be able to delete or block the CA certificate.

Enhanced Security of Local Storage. There should be a certain security
mechanism in the storage of the local CTL so that the corresponding files should
not be moved, copied, or deleted at will. The non-replicability of the trust rela-
tionship is a sign of a secure file, too. The even better proposal is that the file
could be signed by the current user or OS to ensure its integrity and security.
Additionally, we also advise that each application or OS can maintain the CTL
by itself instead of sharing it with others since the isolation of different entities
can greatly reduce the possibility of being attacked.
Here are some pretty good cases in our research. Each CA certificate in the

system-level CTL of Ubuntu is stored in a separate file, and the file replace-
ment has the same requirement as adding, which demands the password of the



Exploring the Security Issues of Trusted CA Certificate Management 399

administrator. Tor stores its CTL in a dynamic link library file, which can not be
modified at all. Besides, the root-level CTL file in macOS is protected by System
Integrity Protection (SIP) [18]. As for Windows, the CTL file is occupied since
the user logins in, and we can’t perform any operations on the file.

Strict Security Check on CA Certificate. Though the verification policy
of some CA managers is based on the trust of the user, users may not be able
to determine whether to trust a CA certificate, and a strict security check on
the CA certificate when importing it or periodically is recommended. There are
some fields requiring special attention, such as the validity period, the security
of the cryptographic algorithm, and the certificate purpose/key usage. Besides,
it is worth noting that those applications that directly trust the OS’s list should
also strictly check the security of the list when using it.
More importantly, it is necessary to verify the complete certificate chain

for applications. In detail, the validity, the hash algorithm, and key size of all
certificates in the certificate chain should be verified. Furthermore, we suggest
that if the security strength of the upper-level CA certificate in a certificate
chain is not stronger than the lower-level CA certificate, then the latter should
not be considered secure. Last but not least, updating the CTL from the trusted
source timely can mitigate the risk of trusting in CAs which have been deleted
or blocked.

Restrictions on Certificate Purpose. We recommend that CA certificates in
the CTL provide users with no certificate purpose by default and users can turn
on the certificate purposes by selecting them from common certificate purposes
such as SSL and S/MIME. Besides, the CA manager should verify whether the
selected key usage is consistent with the purpose declared in the certificate. For
the key usage related to some system functionalities, additional authentication
or completely disabling is recommended.

6 Conclusion

This work has analyzed and reported the security issues of the trusted CA cer-
tificate management in current OSs and PKI applications. We explored three
OSs and eight applications installed on each OS, focused on the source of trust,
the functionalities of the CA managers, the modification to the local CTL, con-
trol of the certificate purpose and security check of the CA certificate, and found
several security issues which may bring troubles and risks to users. Furthermore,
we propose some suggestions for these security problems.

Acknowledgment. We thank all the reviewers and our shepherd for their helpful
feedback and advice. This work was partially supported by the National Cyber Security
Key Research and Development Program of China (No. 2018YFB0804600).



400 Y. Fu et al.

References

1. Alsaid, A., Mitchell, C.J.: Installing fake root keys in a PC. In: Chadwick, D.,
Zhao, G. (eds.) EuroPKI 2005. LNCS, vol. 3545, pp. 227–239. Springer, Heidelberg
(2005). https://doi.org/10.1007/11533733 16

2. Sloppy Security Software Exposes Dell Laptop to Hackers — Laptop Mag. https://
www.laptopmag.com/articles/dell-certificate-security-flaw

3. Superfish - Wikipedia. https://en.wikipedia.org/wiki/Superfish
4. Braun, J., Volk, F., Classen, J., Buchmann, J., Mühlhäuser, M.: CA trust man-

agement for the web PKI. J. Comput. Secur. 22(6), 913–959 (2014)
5. de Carnavalet, X.D.C., Mannan, M.: Killed by proxy: analyzing client-end tls inter-

ception software. In: Network and Distributed System Security Symposium (2016)
6. Chung, T., et al.: Measuring and applying invalid ssl certificates: the silent majority.

In: IMC (2016)
7. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the https

certificate ecosystem. In: IMC (2013)
8. Durumeric, Z., et al.: The security impact of https interception. In: NDSS (2017)
9. Krombholz, K., Mayer, W., Schmiedecker, M., Weippl, E.: ” I have no idea what

i’m doing”-on the usability of deploying {HTTPS}. In: 26th {USENIX} Security
Symposium ({USENIX} Security 17) (2017)

10. Li, B., et al.: Certificate transparency in the wild: exploring the reliability of mon-
itors. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (2019)

11. Li, B., Lin, J., Wang, Q., Wang, Z., Jing, J.: Locally-centralized certificate val-
idation and its application in desktop virtualization systems. IEEE Trans. Inf.
Forensics Secur. 16, 1380–1395 (2020)

12. Li, B., Wang, W., Meng, L., Lin, J., Liu, X., Wang, C.: Elaphurus: ensemble defense
against fraudulent certificates in TLS. In: Liu, Z., Yung, M. (eds.) Inscrypt 2019.
LNCS, vol. 12020, pp. 246–259. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-42921-8 14

13. Perl, H., Fahl, S., Smith, M.: You won’t be needing these any more: on removing
unused certificates from trust stores. In: Christin, N., Safavi-Naini, R. (eds.) FC
2014. LNCS, vol. 8437, pp. 307–315. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-45472-5 20

14. Adobe Approved Trust List members. https://helpx.adobe.com/acrobat/kb/
approved-trust-list1.html, Accessed 30 Apr 2021

15. Top 1 Million Analysis - March 2020. https://scotthelme.co.uk/top-1-million-
analysis-march-2020/

16. Apple Root Certificate Program. https://www.apple.com/certificateauthority/ca
program.html

17. List of available trusted root certificates in macOS High Sierra. https://support.
apple.com/en-us/HT208127, Accessed 11 May 2021

18. About System Integrity Protection on your Mac. https://support.apple.com/en-
us/HT204899

19. Certificate Contents for Baseline SSL - CAB Forum. https://cabforum.org/
baseline-requirements-certificate-contents/

20. CA/Browser Forum - CAB Forum. https://cabforum.org/
21. Censys. https://censys.io/certificates?q=, Accessed 30 Apr 2021
22. ETSI - Welcome to the World of Standards!. https://www.etsi.org/



Exploring the Security Issues of Trusted CA Certificate Management 401

23. European Union Trusted Lists. https://helpx.adobe.com/document-cloud/kb/
european-union-trust-lists.html, Accessed 30 Apr 2021

24. MICROSOFT Included CA Certificate List. https://ccadb-public.secure.force.
com/microsoft/IncludedCACertificateReportForMSFT, Accessed 30 Apr 2021

25. Program Requirements - Microsoft Trusted Root Program. https://docs.microsoft.
com/en-us/security/trusted-root/program-requirements

26. MOZILLA Included CA Certificate List. https://ccadb-public.secure.force.com/
mozilla/IncludedCACertificateReport, Accessed 30 Apr 2021

27. Mozilla Root Store Policy-Mozilla. https://www.mozilla.org/en-US/about/
governance/policies/security-group/certs/policy/, Accessed 1 May 2021

28. Why Does Mozilla Maintain Our Own Root Certificate Store? - Mozilla
Security Blog. https://blog.mozilla.org/security/2019/02/14/why-does-mozilla-
maintain-our-own-root-certificate-store/

29. StatCounter Global Stats - Browser, OS, Search Engine including Mobile Usage
Share. https://gs.statcounter.com/, Accessed 30 Apr 2021

30. Principles and criteria and practitioner guidance. https://www.cpacanada.ca/en/
business-and-accounting-resources/audit-and-assurance/overview-of-webtrust-
services/principles-and-criteria

31. Root CA Certificate: When you shouldn’t trust a trusted root certificate — Mal-
warebytes Labs. https://blog.malwarebytes.com/security-world/technology/2017/
11/when-you-shouldnt-trust-a-trusted-root-certificate/

32. Vallina-Rodriguez, N., Amann, J., Kreibich, C., Weaver, N., Paxson, V.: A tangled
mass: the android root certificate stores. In: Proceedings of the 10th ACM Inter-
national on Conference on emerging Networking Experiments and Technologies
(2014)


