2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) | 979-8-3503-8199-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/TrustCom60117.2023.00117

2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

The Broken Verifying: Inspections at Verification
Tools for Windows Code-Signing Signatures

Guanggi Liu*f, Qiongxiao Wang?, Cunging Ma*, Jinggiang Lin%, Yanduo Fu*, Bingyu Li¥ Dingfeng Ye*
*State Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing, China
Email: {liuguangqi,macunqing,fuyanduo,yedingfeng } @iie.ac.cn
School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
iBeijing Certificate Authority Co., Ltd., Beijing, China
Email:wangqiongxiao@bjca.org.cn
§School of Cyber Security, University of Science and Technology of China, Hefei, China
Email:linjq@ustc.edu.cn
9School of Cyber Science and Technology, Beihang University, Beijing, China
Email:libingyu@buaa.edu.cn

Abstract—Terminal users can deploy verification tools to verify
Windows code-signing signatures and check their details (signing
time, certificate chain, etc). Some representative verification tools
are also adopted in related studies, which take tools’ outputs as
contributing factors to analyse malicious software or certificate
ecosystems. However, as code-signing signature verification is
related to multiple dimensions, such as certificate status and
system policies, getting accurate signature status and details is
essential but rather complicated. And performance of different
tools in verifications has not been well studied and compared
with.

We provide a novel methodology to inspect Windows code-
signing verification tools, checking that if they print consistent
results and details. We choose four representative tools to verify
massive samples (more than 26 million) and collect their outputs.
During the verification, we deploy a two-step verification method,
which efficiently excludes 78.8% of samples (not signed). We
write scripts to read each line of outputs, learning tools’ output
structures. Then we can precisely locate and extract interested
code-signing fields from outputs. After that, we compare these
essential fields from different tools, and analyze inconsistent
cases. Finally, we present three types of inconsistent cases: verify-
ing neglect, timestamp disturbance, and compatibility/robustness
issues. We find some verification tools may assert code-signing
signatures as invalid due to external factors, such as unexpected
signing or invalid timestamp.

Index Terms—Windows code signing, signature verification,
tool inspection

I. INTRODUCTION

In Windows platform, code-signing signatures [19] can
protect software from being tampered with and provide non-
repudiation properties during software distributions. Software
with valid signatures is easier to be trusted by the system
or anti-virus programs [8] [7]. Therefore, developers are
willing to append code-signing signatures into their products
to improve credibility. On the other hand, malware developers
expect to make up valid signatures to bypass system checking
[71 [9] [10]. Verifying code-signing signatures, and getting
accurate signature status or details seem straightforward, they
are rather complicated. Firstly, signatures can be embedded

Qiongxiao Wang is the corresponding author.

into a portable executable (PE) [25] file (.exe, .dll, etc.) named
Authenticode [20] or exist in a signed Catalog file (.cat)
[21]. Secondly, the signature status (valid, invalid, not signed,
etc.) is related to multiple dimensions, such as system clocks,
system policies, and the status of signing certificates. And
to construct complete certificate chains, verification programs
may need to download some absent certificates from Internet.
Thirdly, during the creation of signatures, a timestamp from
trusted providers could be attached to the signature segment
to extend the signature’s lifetime, which also complicates
signature verifications.

There are some popular verification tools available to verify
code-signing signatures. They usually invoke Windows API
(e.g. func WinVerifyTrust from wintrust.h) to verify code-
signing signatures. For example, Sigcheck [12] is a third-party
tool recommended by Microsoft. It is also integrated in the
online malware-analysis platform VirusTotal'. Signtool [22] is
an official tool integrated in Windows SDK. These tools serve
as a supplement outside original Windows defence mecha-
nisms, providing rich details about code-signing signatures
(signature status, certificate chain parsing, timestamp, etc).
Hence their outputs are widely adopted in related studies,
to analyze code-signing issues (e.g. certifying malware or
potentially unwawnted programs (PUP) [9] [7], vulnerabilities
in verifications [8], and code-signing economics/ecosystems
[10] [11]). However, in these studies, verification tools are di-
rectly used, without deep inspections towards tools themselves.
If verification tools make mistakes, their users or integrated
platform (e.g. VirusTotal) will get incorrect results and details,
then affect further analysis for samples. Furthermore, except
for tools that invoke Windows API, some open-source tools
utilizes open-source libraries to verify code-signing signatures,
such as Osslsigncode [13]. It is also valuable to check that if
open source tools performance as well as Windows API when
they deal with code-signing signatures.

In this paper, we provide a novel methodology to in-

"https://www.virustotal.com

2324-9013/23/$31.00 ©2023 IEEE 804
DOI 10.1109/TrustCom60117.2023.00117
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 11,2024 at 08:22:38 UTC from IEEE Xplore. Restrictions apply.

spect Windows code-signing verification tools, checking that
if they print consistent results and details in verification.
We raise a universal pipeline, and select four representative
verification tools (Sigcheck, Signtool, AnalyzePESig [3], and
Osslsigncode) to be inspected. In addition to signature status,
these tools also print details about signing certificates and
timestamps. We divide the methodology into three stages.
In stage one, we download more than 26 million samples
(13.42 TB) from VirusShare? as our sample source. Then,
we verify all the samples with selected tools. To improve
efficiency, we divide the verification procedure into two steps,
which excludes 78.8% of samples (not signed) in the first
step. We finally get 70.7 GB verification outputs, belonging
to 5.5 million filtered samples. In stage two, we analyze these
outputs and figure out their structures. As some verification
tools are closed-source programs, we cannot automatically
read and understand their outputs without manual work. So
we write python scripts to recognize each line in outputs
and collect 383 kinds of output sequences from all outputs.
Then we acquire structure knowledge about these outputs. In
stage three, with acquired output sequences, we locate and
extract interested code-signing fields from outputs, and then
compare them with each other, checking that if all tools print
consistent results and details. Finally, we present three types
of inconsistent cases: 1) Windows Catalog signatures will be
neglected sometimes if a tool verifies Authenticode signatures
first. 2) Windows API processes a more strict strategy for
timestamp, while Osslsigncode does not. 3) Compatibility and
robustness issues will lead to inconsistent outputs. For case
1 and 2, samples all contain valid code-signing signatures,
but they are asserted to be invalid (by mistake or by design).
We report our observation to related developers. In some
way, our analysis demonstrates the complexity of Windows
code-signing signature verification. Our methodology raises
a universal pipeline to understand and compare different
verification tools. It is also suitable for other code-signing
signature verification tools such as Powershell and Signify.
In summary, we make the following contributions:

e« We raise a universal pipeline to understand and com-
pare different Windows code-signing verification tools,
checking that if they print consistent results and details
in verification.

o We measure four representative tools with more than
26 million samples. We design a two-step verification
method. It efficiently excludes 78.8% of samples (not
signed). Meanwhile, we acquire a specialized dataset
for code-signing studies and publish its metadata in our
Github webpage?.

« We recognize each text line in outputs, and summarize
output structures. Structure knowledge allows us to pre-
cisely extract interested fields from tools’ outputs.

o We compare interested fields from different tools’ outputs
and analyze three types of inconsistent cases, then report

Zhttps://www.virusshare.com
3https://github.com/samKid3000/code-signing-sample-metadata

them to related developers.

The rest of the paper is organized as follows. We in-
troduce preliminaries in Section II. The methodology and
corresponding data are presented in Section III and Section
IV, respectively. We show analyses and discussions in Section
V. Then we display related works in Section VI. Section VIII
concludes this work.

II. PRELIMINARIES

We introduce pertinent preliminaries about Windows code-
signing and selected verification tools.

A. Windows Code-Signing

Authenticode Signature. Authenticode [15] is based on
Public-Key Cryptography Standards (PKCS) #7 signed data
and X.509 certificates to bind an Authenticode-signed binary
to the identity of a software publisher. We illustrate the PE
file format and Authenticode signature format in Figure 1.
An Authenticode signature is embedded in a Windows PE
file (.exe, .dll, etc.), in a location specified by the Certificate
Table entry in Optional Header Data Directories. In the figure,
an Authenticode hash value is calculated by PE objects with
white background, then the software publisher signs the hash
value with its code-signing certificates. The signature struc-
ture should contain the whole certificate chain of signers. It
may contain a timestamp signed by a trusted timestamping
authority (TSA). And PKCS #7 signed data structures are
designed to support multiple signatures. For example, it may
contain a signature signed with the SHA1 algorithm to satisfy
outdated Windows systems and another signature signed with
the SHA256 algorithm to satisfy current systems.

Digitally-Signed Catalog File. A digitally-signed catalog file
[21] (.cat) can provide a digital signature for an arbitrary
collection of files. Digest values for executable files are
listed and signed in the catalog file. All executable files that
participate in the catalog share a single signature. Then there
is no need to sign files one by one like Authenticode.

Windows systems install catalog files to the Cat-
Root directory under the system directory, e.g., %System-
Root%\System32\ CatRoot. Catalog files are usually used to
set signatures for driver packages. A catalog file will be
automatically installed to the CatRoot when the driver package
is staged to the Driver Store directory and will be automat-
ically uninstalled from the CarRoot when the driver package
is removed from the Driver Store directory. It should not be
added to or removed from that directory manually.

Timestamp. If a TLS certificate expires, the certificate will be
rejected by TLS clients. However if end-users reject software
signed by expired code-signing certificates, all signatures only
keep valid when the certificate is valid. This is unrealistic
for software distributions. Timestamp [23] is introduced to
solve this problem. Timestamp can prove that a signature is
signed during its signing certificate’s validity period. Then the
signature should keep valid even when the signing certificate
expires. To achieve this goal, the timestamp should be signed
by a TSA.

805

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 11,2024 at 08:22:38 UTC from IEEE Xplore. Restrictions apply.

Typical Windows PE File Format Authenticode Signature Format

MS-DOS 2.0 Section PKCS#7 Signed Data

contentInfo
PE File Header Includes:
e Authenticode hash value

e Legacy structures

Optional Header

Windows-Specific Fields certificates

Includes:

e X.509 certificates for software
signer

e X.509 certificates for
timestamp signer (optional)

Checksum ‘

Data Directories

— Certificate Table

‘ Signerinfos

Signerinfo

Includes:

Section Table (Headers) o Signed hash of contentinfo

e Software signer description
and URL (optional)
e Timestamp (optional)

Section 1

Section N

Timestamp (optional)

¥ Attribute Certificate Table A PKCSH#9 counter-signature,

includes:

bCertificate binary array .
(contains Authenticode
signature)

Hash value of the

Signerinfos signature

e UTC timestamp creation
time

e Timestamping authority

signature

Remaining content

Object with gray background are omitted from calculating the
Authenticode hash value

[]

Bold Hash values or Signatures

Fig. 1: PE File Format and Authenticode Signature Format

B. Verification Tools

We show the overview of verification tools in Table I.
Within four verification tools, Sigcheck (v2.82) [12], Signtool
(v10.0.18362.1) [22], and AnalyzePESig (v0.0.0.5) [3] invoke
Windows API (e.g. func WinVerifyTrust from wintrust.h) to
verify Authenticode and Catalog signatures. Osslsigncode
(v2.2) [13] verifies signatures by open-source libraries such
as OpenSSL and cURL. Osslsigncode cannot automatically
verify Catalog signatures. So we just use it to verify Au-
thenticode signatures in this paper. All four tools print rich
details when verifying signatures, such as signing certificates
(common name, serial number, fingerprint, validity period,
etc), timestamp and timestamp certificates, reasons for invalid
signatures.

III. METHODOLOGY AND IMPLEMENTATION

We illustrate the full pipeline of our methodology in Figure
2. Data naming is described in Table II. We present our
methodology with the following sketch:

Start
X Two-Step
VirusShare) P
VirusShare | Verifications .
Samples Output Files
Samples
(compressed)
gather_toolname.py
n
x
‘ | g
Program i
Sequence Regular s
Execute . . e
) Strings Expressions S
Exceptions 3
I 3
0
)
<
Comparison Extracted
—observe —| :
Results Information
compare.py
analyze

1. Verifying Neglect Stage 1

2. Timestamp Disturbance Stage 2

3. Compatibility & Robustness Stage 3

Fig. 2: Full Pipeline of Our Methodology

Stage 1: We download samples (e.g. Virusshare_md5val)
from VirusShare as original inputs, and design a two-step
verification procedure to deal with these samples. Then for
each filtered sample, we acquire its four verification output
files (e.g. Virusshare_md5val_Sigcheck.txt).

Stage 2: We read each line in output files to learn tools’
output structures. Then for each tool, we gather its sequence
string list (e.g. Sequence_Sigcheck.txt) and then summarize its
outputs’ regular expression. We also record specific program-
execute exceptions.

Stage 3: We locate and extract specific code-signing frag-
ments from output files through outputs’ structure knowledge.
Finally, for each filtered sample, we compare its four extracted
information (e.g. Virusshare_md>5val_extract_Sigcheck.json).

We mainly present the methodology, implementation, and
challenges in this section. Corresponding data collected or
generated in the methodoloty is shown in next section.

A. Stage 1: Samples and the Two-Step Verifications

1) Sample Source: Until now, there is no specialized public
dataset providing PE files with code-signing signatures only.
In this paper, we choose VirusShare as our sample source. It
is a repository of malware samples, usually adopted in code-
signing research [9] [11]. VirusShare samples are named with
the form VirusShare_md5val, where md5val is the sample’s
MD5 value.We download more than 26 million compressed
samples from the VirusShare website. Then we decompress
them as the original inputs.

To express the sample size and workload in our work, we
show statictics of sample size from related studies in Table
III. Our work deal with much more samples than others [9]

(8] [11].

806

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 11,2024 at 08:22:38 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Overview on Verification Tools

Ttem signature support show details how to verify
Tool
Sigcheck Authenticode, Catalog signer, tlmestar_np, gemﬁcate chain,
reason for invalid signature
Signtool Authenticode, Catalog signer, timestamp, certificate chain mYOke _Wmdows API .
- - 0 o (e.g. func WinVerifyTrust from wintrust.h)
AnalyzePESig Authenticode, Catalog signer, llmestamp, certil cate cha,
reason for invalid signature
Osslsigncode Only Authenticode signet, timestamp, gertlflcate chain, open source library (OpenSSL, cURL, etc.)
reason for invalid signature

TABLE II: Data Naming in Pipeline

Algorithm 1: Two-Step Verifications

Data
Sample Binary

Naming

Virusshare_md5val
Virusshare_md5val_Sigcheck.txt,
Virusshare_md5val_Signtool.txt,

Virusshare_md5val_AnalyzePESig.txt,
Virusshare_md5val_Osslsigncode.txt
Sequence_Sigcheck.txt,
Sequence_Signtool.txt,
Sequence_AnalyzePESig.txt,
Sequence_Osslsigncode.txt

Output Files

Sequence Strings

Virusshare_md5val_extract_Sigcheck.json,
Virusshare_md5val_extract_Signtool.json,
Virusshare_md5val_extract_AnalyzePESig.json,
Virusshare_md5val_extract_Osslsigncode.json

Extracted Information

2) Two-Step Verifications: With VirusShare samples, we
already acquire enough samples to launch the verification
procedures. However VirusShare provides samples including
multiple file types, not specialized for code-signing purposes.
If we start the verification process directly, quite a few
irrelevant outputs will be generated and need efforts to
be excluded. We design a (wo-step verification process
to deal with samples, discarding not signed samples in
the first step. Procedures are described in Algorithm
1.We divide four verification tools into two groups: a)
Sigcheck, Signtool, and AnalyzePESig are adopted in
the first step, while b) Osslsigncode is adopted in the
second step. If tools in the first step all assert a sample
to be not signed, the sample will be abandoned without
participating in the second step. Meanwhile, for every signed
sample, we save its four output files separately. Output
files are named VirusShare_md5val_toolname.txt, such as
VirusShare_0003c4026a2110716276¢1c5889bdc3d_Sigcheck.
1xt.

All the verifications are conducted in a cloud service from
Alibaba Cloud, with Windows Server 2016 on two cores vCPU
and 8 GB RAM. The verification python script is launched
with a multi-thread mode. Before the two-step verifications
start, some tips need to be noticed: 1) keep the system update
to be the latest. 2) configure the system policy for code-signing
correctly [16]. 3) be cautious to avoid encoding faults when
saving output files. 4) all scripts should be as automatic as
possible. 5) elaborately design the directory structures and
naming methods in the methodology, to deal with a number

Input: path < file path of a sample
Output: outputs < verification output files
resy < verify_with_Sigcheck (path);
reso < verify_with_Signtool (path);
ress <— verify_with_AnalyzePESig (path);
statusy < read_status_Sigcheck (resy);
statusy < read_status_Signtool (ress);
statuss < read_status_AnalyzePESig (ress);
if statusy, statuss, statuss = not signed then
| outputs < None;
else
resy < verify_with_Osslsigncode (path);
outputs < {resi,resa, ress,resst;
end
return outputs;

of samples.

Two-Step Method: The two-step verifications aim to exclude
unwanted samples in advance as many as possible. It effi-
ciently excludes 78.8% samples which do not contain code-
signing signatures. After that, we keep 5.5 million samples left.
Step-two tools (only Osslsigncode now) can directly verify
these filtered samples. More tools we inspect, more efficient
the verification procedure becomes.

We arrange three tools which invoke Windows API in the
first step. They are enough to exclude not-signed samples.
Because if a sample is asserted to be not signed by first-step
tools (Windows API), it will also be identified as not signed by
the Windows system in all probability. Defence mechanisms
for code-signing such as UAC (User Account Control) [26]
or SmartScreen [24] become useless for these samples. It is
useless to take them into account ever. On the other hand,
as long as there is a well formatted PKCS#7 signed data
structure exists in the sample, step-one tools will assert the
sample to be signed (signature status may be invalid). And
there can be some malicious samples that just copy signatures
from other files (e.g. using SigThief [28] to bypass anti-virus
programs). These samples’ signatures are definitely invalid and
meaningless, but samples are not excluded during the two-step
verifications.

No Third-Party Filter: Comparatively speaking, we do not
use some popular third-party toolkits such as PEfile [1] and

807

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 11,2024 at 08:22:38 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Sample Size in Related Research

Item
Issue

sample source sample size

Certify Potentially Unwanted Programs (PUP) [9]

CCSS, VirusShare, NetCrypt, Malicia, Italian

356 thousand

Code-Signing Certificate Revocation [8]

WINE, VirusTotal, Symantec, etc. 965 thousand

Code-Signing Certificate in Korea [11]

VirusShare 5.9 million

Tool Inspection (this work)

VirusShare 26 million

TrID [29] to recognize and exclude non-PE files in our pipeline
because of compatibility concerns. Some malformed PE files
are too complicated to be recognized by these toolkits, espe-
cially for malware developments. The compatibility problem
was also explained in another research [11].

B. Stage 2: Outputs Studies

In stage two, we begin to learn these outputs. To precisely
extract related fields, we have to fully understand the output
format for each tool. We separately prepare four python scripts
(named gather_toolname.py, e.g. gather_Sigcheck.py) to read
different tools’ outputs, gathering structure information as well
as program-execute exceptions.

In most cases, output files can be recognized in the form of
key-value. So we design a universal method in scripts to learn
output structures, assisted by manual work. For each tool, one
gather_toolname.py script reads corresponding output files and
extracts the key’s name in each text line, and then joints these
key names to constitute a sequence string. The sequence string
form can be abstracted as follows:

{Keyl|......| KeyN }

We prepare an empty list in every gather_toolname.py script
to save possible sequence strings. When processing with an
output file, if the captured sequence string does not exist
in the current list, we add it to the list. We finally acquire
four sequence string lists (named Sequence_toolname.txt, e.g.
Sequence_Sigcheck.txt). Although each list we finally obtain
may does not cover all possibilities of a tool, it is enough for
us to extract interested information from existing output files.
We display a sequence string excerpt example from Sigcheck
below.

{Signature Status||Signing date|Signer™||
Cert Status||Cert Issuer||Serial Number||
Thumbprint||Valid from||Valid to}

With sequence string lists, we are able to summarize regular

expressions for these outputs. We present the regular expres-
sion for Signtool outputs in Section I'V-B, Figure 3.

ey

Manual Work: Reading each text line from an output file
and constituting a sequence string is a ideal description
for gather_toolname.py scripts. However, the reality is that
gather_toolname.py script-writing needs to be manually iter-
ated many times before the final version, which is a repetitive
process.

Manual work occurs because: a) there are some text lines
only contain the value part. For example, a text line that

represents signer’s identifier may be ’Alibaba’, not ’Signer:
Alibaba’. For these lines, we need to infer their key names by
context and then create uniform key names (e.g. we rename
specific signer identifiers as Signer in the example (1) above,
marked with *). When writing scripts, we need extra efforts
to locate these lines and rename key names.

b) Similar to condition a), some sequence strings contain
specific values. These values may be variable and are unhelpful
for summarizing output structures. We need to find out them
and replace specific values with placeholders.

c) Output files with program-execute exceptions do not
satisfy the key-value form. And we do not know in advance
possible exception descriptions that appear in output files.
If we just mark all output files that we cannot recognize
as ‘exception’, but leave no details, this is not kind for
later analyses. We can only collect exception descriptions by
manual manners.

At the very start, our gather_toolname.py scripts will ac-
quire a great deal of sequence strings but most of sequences are
redundant. As we pay manual work in script-writing, numbers
of sequence strings become smaller and smaller. Finally we
get 383 kinds of sequence strings.

Summary of Output Structures: With sequence strings
and regular expressions, we have a clearer vision at output
structures. We summarize verification tools’” output details in
Table IV. Different details in tools are:

Limited': If there are multiple signatures in a sample,
Sigcheck and AnalyzePESig will print ‘valid’ as long as any
signature in the sample is valid. Signfool will print ‘Success-
Jully Verified.’ only if all signatures are valid. But Signtool will
not figure out which signature is invalid when ‘Successfully
Verified.” is not present. Osslsigncode will separately print
every signature’s status.

Limited?: AnalyzePESig shows signing time of timestamp,
but does not show the certificate chain of timestamp signer.

Limited’: If there are multiple signatures in a sample,
Sigcheck, Signtool, and Osslsigncode will print details (signer
and cert-chain, timestamp and cert-chain) for each signature.
But if not all signatures are valid, Sigcheck will only print
information of valid ones.

C. Stage 3: Information Extracting and Comparing

In stage three, with acquired sequence strings and regular
expressions, we can locate and extract critical code-signing
information {rom output files. These slices are what we really
care about in signature segments. Then, we compare these
extracted fragments with each other.

808

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 11,2024 at 08:22:38 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Verification Tools Output Details

Item Tool Sigcheck Signtool AnalyzePESig | Osslsingcode
signature status Yes (limited!) | Yes (limited') | Yes (limited") Yes
reasons for invalid Yes No Yes Yes
signer and cert-chain Yes Yes Yes Yes
timestamp and cert-chain Yes Yes Yes (limited?) Yes
multi-signature info Yes (limited?) Yes No Yes

We determine interested information to be extracted as
follows. An extracted information example is shown in Section
IV-C, Figure 4.

« signature status: the result of verification, such as valid,
invalid, not signed, known error descriptions, or unknown
error. If the status is invalid, we attach specific reasons
in this item. If there are multiple signature that exist in a
sample, we assert the status as valid if any of signatures
is valid.

« signature count: how many signatures exist in the sam-
ple.

o timestamp count: how many timestamps exist in the
sample.

« signature information: a set of signer and timestamp
details, for single or multiple signatures.

— code-signing signer: identifier of the code-signing
signer, such as signing certificate thumbprint.

— timestamp: exact time marked in the timestamp.

— timestamp signer: identifier of the timestamp signer.

We prepare four scripts (named extract_toolname.py,
e.g. extract_Sigcheck.py) to extract information from
outputs. And we save extracted information as json files
(named VirusShare_md5val_extract_toolname.json, e.g.
VirusShare_md5val_extract_Sigcheck.json). We organize four
json files that belongs to the same sample as a set. Then, we
deal with each set using a compare.py script, trying to find
inconsistent conditions between verification tools.

Extraction: When extracting information, some fields cannot
be directly acquired, but need to be inferred by context,
such as signature count and timestamp count. As we have
known all structures for outputs from stage two, we can infer
this information with no doubt. Furthermore, for exception
conditions, we can use exception descriptions obtained by
gather_toolname.py scripts, placing them in the ‘signature
status’ item.

Comparison: When we compare extracted information from
different tools, we assert they are inconsistent if any extracted
item is different from other tools’. This assertion is coarse-
grained and will cause some false positive conditions, because
not all tools provide the whole items above. And different tools
may print details with different extents, making some incon-
sistent conditions are reasonable. We show deeper analyses in
Section V.

IV. DATA COLLECTION

A. Verification Output Files and Filtered Dataset(via Stage 1)

We download more than 26 million Virusshare samples. It
takes 13.42 TB for data storage. After the first verification step,
3.16 TB (about 5.5 million) samples are left. The two-step
verification design excludes about 78.8% of original samples.

Remaining samples (5.5 million) are processed with all
four verification tools. And finally, we get 70.7 GB (22
million) output files. All output files are saved with the name
VirusShare_md5Sval_toolname.txt, such as VirusShare_0003c¢
4026a2110716276e1c5889bdc3d_Sigcheck.txt.

After Stage 1, we acquire a dataset of signed samples. We
save this dataset. If we want to add new tools in our pipeline
and inspect them, we can use new tools to directly verify
this dataset to get new tools’ output files. Meanwhile, we
publish metadata (file name, signer identifier, signer certificate
thumbprint) of samples with valid signatures in our Github
webpage. Any researcher can: 1) follow this list to download
specific signed samples from VirusShare; or 2) refer to MDS
values appear in file names, to search samples’ analysis reports
from online malware-analysis platform, such as VirusTotal.

B. Output Structures (via Stage 2)

1) Sequence Strings: With gather_toolname.py scripts, we
gather 61 kinds of sequence strings for Sigcheck; 188 for Sign-
tool; 134 for Osslsigncode. Analyze PESig output structures are
known by reading its source code, but we still run scripts to
gather its exception conditions.

We finally gather multiple sequence strings for each single
tool. Reasons for this variety are: a) Some irrelevant structure
information is also gathered, the redundant items are unavoid-
able during gathering, because we cannot predict and exclude
them in advance. b) Samples may contain multiple signatures
and timestamps, bringing about variety in output structures. c)
We find that the verification process is interrupted sometimes
when Sigcheck analyzes specific samples, leaving the output
structures malformed.

2) Regular Expressions: With the sequence strings we gath-
ered, we can summarize regular expressions for verification
tool outputs. A simplified regular expression for Signtool out-
puts is displayed in Figure 3. Irrelevant items for code-signing
are not presented. Sigcheck, AnalyzePESig, and Osslsigncode
hold similar quantity of details.

809

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 11,2024 at 08:22:38 UTC from IEEE Xplore. Restrictions apply.

(
Unable to verify this file using a
catalog.
(
Signature Index: (.x)
Hash of file: (.x)
Signing Certificate Chain:
(
Issued to
Issued by
Expires
SHA1 hash

The signature is
timestamped: (.x)
Timestamp Verified by:
(
Issued to
Issued by
Expires
SHA. hash

File is not timestamped.

)+

File is signed in catalog:
Hash of file: (.x)
Signing Certificate Chain:
(

Issued to

Issued by

Expires

SHA1 hash

The signature is timestamped:
(.*)
Timestamp Verified by:
(
Issued to
Issued by
Expires
SHA. hash
)+

File is not timestamped.

)
)
(Successfully verified.)x
Number of signatures successfully
Verified: (.*)
Number of warnings: (.x)
Number of errors: (.x)
}

Fig. 3: Simplified Regular Expression (Signtool)

3) Program-Execute Exceptions: With gather_toolname.py
scripts, we recognize some output files as program-execute
exceptions. Sigcheck fails to verify samples sometimes. It
prints words such as ‘Error while attempting to process
file: Invalid access to memory location.” or ‘Error while
attempting to process file: Error 0xe06d7363’. AnalyzePE-
Sig may fail to recognize samples with malformed PE for-

"signature status": "valid",
"signature count": 2,
"timestamp count": 2,
"signature info": [
{
"code-signing signer": "0
CCE41B66788C3A0E4COE3
F2CO5FCAF571A013C6",

"timestamp": "Fri Dec 28 18:04:04
2o18";

"timestamp signer": "03
AS5B14663EB12023091B84

A6D6A6BBC8T7T1DEG6B"

"code-signing signer": "8066
DB916D4F003858643B
EDD43B5264485734D0",

"timestamp": "Fri Dec 28 18:04:07
2018

"timestamp signer":
D4FA26A68F9EB4596
F1D99ABB2COEA76DFA"

"36527

}

Fig. 4: Extracted Information Example (Signtool)

mats. It will print words such as ‘Read the wrong number
of bytes’, ‘Error no IMAGE_NT_SIGNATURE’, or ‘Error
no IMAGE_DOS_SIGNATURE’. Ossisigncode also fails and
prints ‘Unrecognized file type’, ‘Failed to calculate DigitalSig-
nature’, ‘Read stream data error’, ‘Failed to extract PKCS7
data’, and so on. In this respect, Signtool performs well.

C. Extracted Information (via Stage 3)

An extracted information example of Signfool is shown in
Figure 4 (from VirusShare_0003c4026a2110716276e1c5889-
bdc3d_extract_Signtool.json). Sigcheck and Osslsigncode get
equivalent information, while AnalyzePESig is designed to
only print the first valid signature it meets.

V. ANALYSIS AND DISCUSSION

In an ideal circumstance, the extracted information should
be consistent with each other. However, by comparing ex-
tracted fragments, we find some inconsistent cases. We present
three types of cases in this Section. And then we discuss the
common point appears in two cases: their verifying is broken.
Finally, we talk about our future works.

A. Case 1: Verifying Neglect

By comparing extracted information, we find a logic flaw in
Sigcheck: Catalog signatures will be neglected while Sigcheck
is designed to verify Authenticode signatures first. Then any-
one can append an invalid Authenticode signature in a Catalog-
signed sample, and Sigcheck only displays that the tampered
sample contains an Authenticode signature and it is invalid.

We find that the signer of VirusShare_e2585e4c24690cb418
142¢80439b1e5d* is inconsistent according to different tools’

“https://www.virustotal.com/gui/file/e258 5e4c24690cb4 18142c80439b1e5d

810

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 11,2024 at 08:22:38 UTC from IEEE Xplore. Restrictions apply.

outputs. Sigcheck and Osslsigncode show the sample is signed
by ‘F-Secure Corporation’. However, Signfool and AnalyzePE-
Sig show it is signed by ‘Microsoft Windows’. We manually
check the sample. We find it contains a Catalog signature
and an Authenticode signature simultaneously. Its Catalog
signature is signed by ‘Microsoft Windows’, but Authenticode
signature is signed by ‘F-Secure Corporation’. Actually, the
sample is a system file and should only contain the Catalog
signature. Its Authenticode signature is abused.

Things become clear. There is a practical situation that
a sample contains Catalog signatures and Authenticode sig-
natures simultaneously. Sigcheck will search and verify Au-
thenticode signatures first, while Signfool and AnalyzePESig
deal with Catalog signatures first. As a result, they show
inconsistent signatures details.

We think it is a logic flaw to verify Authetnicode sig-
natures first. Because Catalog signatures are usually signed
by Microsoft for Windows system files. And when verifying
Catalog signatures, the verifier will search specific system
directories (e.g., %SystemRoot%\System32\CatRoot) to find
signed Catalog files (.cat). In this sense, it is more credible to
verify Catalog signatures.

We investigate its impact. First of all, containing both kinds
of signatures is not forbidden in code-signing specifications.
Verifications for these two kinds of signatures do not af-
fect each other. And we factually find that some samples
contain two kinds of signatures, which are all signed by
Microsoft. On the other hand, we totally capture four cer-
tificates from three companies which sign extra Authenticode
signatures in this condition. They all sign the same system file
‘msverl00_clr0400.dll’ and the Authenticode signatures they
created are valid according to Sigcheck outputs. We search
these tampered samples in VirusTotal, it shows they are not
malicious. We contact the certificate owners, one of them
explains this is caused by inadvertence, and containing both
kinds of signatures is not rare in software development. At last,
the VirusTotal platform which integrates Sigcheck to analyze
signatures is affected. Platform users and related research [10]
[7] [11] [8] will get incorrect signature information.

We evaluate its risks. Any localhost computer which deploys
Sigcheck as a baseline to verify signatures will get incorrect
signature information. More seriously, anyone can append an
invalid Authenticode signature in a Catalog-signed sample, to
hide its valid Catalog signatures. Sigcheck will only show the
sample contains an invalid Authenticode signature, without
any Catalog signature information. Terminal users will be
confused by this result.

We alert related developers. We post a discussion about
Sigcheck at Microsoft Q&A webpages (Sigcheck is maintained
by Microsoft now) and offer two suggestions for Sigcheck: 1)
verify Catalog signatures first, like Signtool and AnalyzePESig.
2) provide a parameter to enable users to consciously choose
which kind of signatures (Authenticode or Catalog) to verify.
We have not gotten reply from Sigcheck developers. We also
contact VirusTotal website. Its official says VirusTotal can do
nothing unless Sigcheck fixes this flaw.

811

B. Case 2: Timestamp Disturbance

By comparing extracted information, we find a timestamp-
verification difference: tools that invoke Windows API process
a more strict strategy for timestamp. They directly assert a
signature to be invalid if it contains invalid timestamp.

We find that Windows APl (Sigcheck, Signtool, and
AnalyzePESig) asserts the Authenticode signature of
VirusShare_0d1450606¢1e0ea9242fcad86dcSc6b7° as invalid.
The reason for the invalid signature is: ‘The timestamp
signature and/or certificate could not be verified or is
malformed’. However, Osslsigncode shows its timestamp is
invalid, but the code-signing signature is asserted as valid.

We observe the sample binary. It contains an Authenticode
signature with timestamp. The timestamp is signed after the
timestamp certificate expires. Undoubtedly, its timestamp sig-
nature is fake and invalid. Then we observe its code-signing
certificate. We find the certificate is still within its validity
period, not revoked. Therefore, we think its code-signing
signature (without timestamp) should be valid. To test this,
we manually modify the sample. We delete the timestamp part
from the PKCS#7 structure of the signature, as illustrated in
Figure 1. Then we verify the modified sample again, and tools
that invoke Windows API assert the code-signing signature to
be valid. This means Windows API processes a more strict
strategy for timestamp. Anyone can replace valid timestamp
with invalid one, and then invalid timestamp will disturb the
verification of the code-signing signature. We report this case
to Microsoft to ask for further details. Microsoft research just
explains that it is by design. Furthermore, this also alerts
software developers that they should verify the timestamp
before putting it into a code-signing signature.

C. Case 3: Compatibility and Robustness Issues

We also find some compatibility and robustness problems.

1) Compatibility:

Some samples contain complicated PE structures. Thus
non-official tools (Sigcheck, AnalyzePESig, and Osslsigncode)
may fail to parse samples’ signature structures. For example,
Sigcheck may print ‘Error while attempting to process file:
Invalid access to memory location’. AnalyzePESig may print
‘Error no IMAGE_NT_SIGNATURE’. And Osslsigncode may
print ‘Unrecognized file type’. Signtool performes much better.

We find that Osslsigncode asserts some signatures as valid,
while Windows API prints: “The digital signature of the object
is malformed. For technical detail, see security bulletin MS13-
098’. The security bulletin MS13-098 [17] [18] describes an
opt-in update, which makes Authenticode signature verifica-
tion more strict to defend against remote code execution. There
is no much information about the update disclosed to public.
So it is hard for Osslsigncode to support this feature.

2) Robustness:

We notice that Sigcheck prints incomplete or incorrect
information sometimes. We also post a discussion at Microsoft
webpages.

Shitps://www.virustotal.com/gui/file/0d 1450606¢ 1e0ea9242fcad86dc8c6b7

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 11,2024 at 08:22:38 UTC from IEEE Xplore. Restrictions apply.

o Bug I: incomplete information. When there are multiple
Authenticode signatures in a PE file, Sigcheck may show
incomplete signature information. For example, We cap-
ture a sample contains three signatures (No.l is valid,
No.2 is invalid, No.3 is valid). When Sigcheck verifies
the sample, it only shows the first signature information.
Because once it verifies an invalid signature (No.2), it
will stop, making the result incomplete. This incomplete
information is so misleading. Users may think this sample
only contains one signature and it is valid.

e Bug 2: incorrect information. When verifying specific
samples, Sigcheck incorrectly shows the same signature
information twice. More seriously, this problem can occur
with bug 1 concurrently. For example, a sample contains
two Authenticode signatures (No.l is valid, No.2 is
invalid). When Sigcheck verifies the sample, due to Bug
1, it only shows the first signature information. And for
specific samples, it shows No.l signature information
twice. This condition is also misleading. Users will think
this sample contains two signatures and they are all valid.

D. Discussion and Future Work

1) Case 1 and 2 in Common: The Broken Verifying

We notice that case 1 and 2 have something in common.
They all return the result (‘invalid’) half way, before they
verify decisive code-signing signatures (‘valid’ indeed). For
case 1, before verifying Catalog signatures, Sigcheck searches
and verifies Authenticode signatures first, then it returns Au-
thenticode signature status as the result. For case 2, before
verifying the code-signing signature, Windows API asserts the
timestamp is invalid. Then Windows API asserts the code-
signing signature to be invalid as well. For these two cases,
software developers generate valid code-signing signatures
for their software, but they are unexpectedly asserted as
invalid. Any malicious attacker can put external data (invalid
Authenticode signature or timestamp) to break the verification
process.

2) Future Work: We analyze some typical inconsistent
cases in this paper. However, our observation towards com-
parison results is coarse-grained. It is inefficient to manually
analyze comparison results before classifying them. In the
future, we plan to design a fine-grained comparison method to
classify and then analyze comparison results. Besides, some
tools assert signatures to be invalid but not giving enough
explanations. Then we cannot find out specific reasons for
inconsistent cases just by comparing verification outputs we
generate. In this condition, corresponding samples should be
analyzed with in-depth checking. Furthermore, we plan to
elaborately craft some test samples, trying to induce verifi-
cation tools to return incorrect results.

VI. RELATED WORKS

Windows code-signing is designed to protect software from
being tampered with, as well as provide non-repudiation
properties. However, malicious developers could make use of
this technology to earn trust and compromise the system. The

famous Stuxnet malware [5], with valid signatures from fa-
mous software providers, was found to compromise industrial
control systems on specific targets. It has been well studied [6]
[30] and some schemes [33] [32] are proposed to detect such
attacks. Similarly, attackers during the SolarWinds incident
[4] injected malicious code into a SolarWinds DLL file to
launch supply chain attacks. Related studies [31] [27] explain
its complexity and put forward mitigation recommendations.

Attackers always try their best to obtain valid code-signing
certificates to sign malware. Underground trade in code sign-
ing certificates [10] is studied, and it presents the first in-
depth analysis of this underground trade. Abused certificates
to sign potentially unwanted programs (PUP) or malware are
studied [9] [7]. Many certificates which were found to sign
PUP or malware still keep valid, which results in continuous
influences. Abused code-signing certificates in South Korea
were collected, filtered, and evaluated in [11]. And the study
[8] analyzes further influences of revocation problems.

Microsoft publishes an official code-signing best practices
guide [14] to explain implementation details that should be
concerned in developments. Related points in code-signing,
such as analyses for specific scenarios, are noted in the guide.
NIST also publishes a white paper [2] to describe security
considerations for code-signing. It defines some code signing
use cases and identifies some security problems, then provides
some recommendations.

VII. ACKNOWLEDGMENT

This work was supported in part by National Key Re-
search and Development Program of China (Grant No.
2022YFB3903900), the National Natural Science Foundation
of China under Grant 62002011, Youth Top Talent Support
Program of Beihang University under Grant YWF-22-1L-1272.

We are grateful that VirusShare provides original samples.

VIII. CONCLUSION

Code-signing technologies have become more and more
important for modern software distributions. Attackers are
willing to conceal their malicious code with valid signatures
to bypass system checking. In this work, we raise a universal
pipeline to inspect Windows code-signing verification tools.
We use four representative tools to verify massive samples
and learn their outputs. Then, we extract interested code-
signing fragments from outputs and compare them to check
that if all tools print consistent results and details. We present
three types of inconsistent cases: verifying neglect, timestamp
disturbance, and compatibility/robustness issues. In some way,
our analysis demonstrates the complexity of Windows code-
signing signature verification and our methodology raises a
universal pipeline to understand and compare different verifi-
cation tools.

REFERENCES
[1] E. Carrera et al., “pefile,” 2023, https://github.com/erocarrera/pefile.
[2] David Cooper, = Andrew Regenscheid, = Murugiah Soup-
paya, “Security Considerations for Code Signing,” 2018,

https://www.nist.gov/publications/security-considerations-code-signing.

812

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 11,2024 at 08:22:38 UTC from IEEE Xplore. Restrictions apply.

[4

(5

(6]

(7]

[9]

(10]

(11]

[12]

=
)

(14]

(15

[16]

[17

[18]

[19]

ISy
=

(21]

[22

[23]

[24

[25]

[26]

Didier Stevens, “Authenticode Tools,” 2022,
https://blog.didierstevens.com/programs/authenticode-tools.

FireEye, “Highly Evasive Attacker Leverages SolarWinds Supply
Chain to Compromise Multiple Global Victims With SUNBURST
Backdoor,” 2020, https://www.mandiant.com/resources/blog/evasive-
attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-
backdoor.

Joshua Alvarez, “Stuxnet: The world’s first cyber weapon,” 2015,
https://cisac.fsi.stanford.edu/news/stuxnet.

B. Kim and S. Lee, “Conceptual framework for understanding security
requirements: A preliminary study on stuxnet,” in Requirements Engi-
neering in the Big Data Era - Second Asia Pacific Symposium, APRES
2015, Wuhan, China, October 18-20, 2015, Proceedings, vol. 558, 2015,
pp. 135-146.

D. Kim, B. J. Kwon, and T. Dumitrag, “Certified malware: Measuring
breaches of trust in the windows code-signing pki,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, p. 1435-1448.

D. Kim, B. J. Kwon, K. Kozdk, C. Gates, and T. Dumitras, “The broken
shield: Measuring revocation effectiveness in the windows code-signing
PKL” in 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018, 2018, pp. 851-868.

P. Kotzias, S. Matic, R. Rivera, and J. Caballero, “Certified pup:
Abuse in authenticode code signing,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015,
p. 465-478.

K. Kozdk, B. J. Kwon, D. Kim, and T. Dumitrag, “Issued for abuse:
Measuring the underground trade in code signing certificate,” 2018.

B. J. Kwon, S. Hong, Y. Jeon, and D. Kim, “Certified malware in
south korea: A localized study of breaches of trust in code-signing
PKI ecosystem,” in Information and Communications Security - 23rd
International Conference, ICICS 2021, Chongging, China, November
19-21, 2021, Proceedings, Part I, vol. 12918, 2021, pp. 59-77.
Mark Russinovich, “Sigcheck v2.82)
https://learn.microsoft.com/en-us/sysinternals/downloads/sigcheck.

2022,

MichatTrojnara, “osslsigncode,” 2022,
https://github.com/mtrojnar/osslsigncode.

Microsoft, “Code-Signing Best Practices,”
2007, https://learn.microsoft.com/en-us/previous-

versions/windows/hardware/design/dn653556(v=vs.85).
Microsoft, “Windows Authenticode Portable Executable Signature For-
mat,” 2008, https://download.microsoft.com/download/9/c/5/9¢5b2167-
8017-4bae-9fde-d599bac8184a/Authenticode_PE.docx.

Microsoft, ~ “Manage Revocation Checking Policy,” 2009,
https://learn.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-server-2008-R2-and-2008/cc753863(v=ws.11).

Microsoft, “Microsoft Security Advisory 2915720,”
2014, https://learn.microsoft.com/en-us/security-
updates/Security Advisories/2014/2915720.

Microsoft, “Microsoft Security Bulletin MS13-098 -
Critical,” 2014, https://learn.microsoft.com/en-us/security-
updates/Securitybulletins/2013/ms13-098.

Microsoft, “Introduction to Code Signing,” 2017,
https://msdn.microsoft.com/enus/library/ms537361.aspx.

Microsoft, “Authenticode Digital Signatures,”
2021, https://learn.microsoft.com/en-us/windows-
hardware/drivers/install/authenticode.

Microsoft, “Catalog Files and Digital Signa-
tures,” 2022, https://learn.microsoft.com/en-us/windows-

hardware/drivers/install/catalog-files.

Microsoft, “SignTool.exe (Sign Tool),” 2022,
https://docs.microsoft.com/en-us/dotnet/framework/tools/signtool-exe.
Microsoft, “Time Stamping Authenticode Signatures,” 2022,
https://learn.microsoft.com/en-us/windows/win32/seccrypto/time-
stamping-authenticode-signatures.

Microsoft, “Microsoft Defender SmartScreen,” 2023,

https://learn.microsoft.com/en-us/windows/security/operating-system-
security/virus-and-threat-protection/microsoft-defender-smartscreen/.

Microsoft, “PE Format,” 2023, https:/learn.microsoft.com/en-
us/windows/win32/debug/pe-format.

Microsoft, “User Account Control overview,” 2023,
https://learn.microsoft.com/en-us/windows/security/application-
security/application-control/user-account-control/.

813

(27]

[28]
[29]
[30]

(31]

[32]

(33]

S. Peisert, B. Schneier, H. Okhravi, F. Massacci, T. Benzel, C. Landwehr,
M. Mannan, J. Mirkovic, A. Prakash, and J. B. Michael, “Perspectives
on the solarwinds incident,” IEEE Security & Privacy, vol. 19, no. 2,
pp. 7-13, 2021.

J. Pitts, “SigThief,” 2015, https://github.com/secretsquirrel/SigThief.
M. Pontello, “TrID,” 2017, https://www.mark0.net/soft-trid-e.html.

M. A. Z. Raja, H. Naz, M. Shoaib, and A. Mehmood, “Design of
backpropagated neurocomputing paradigm for stuxnet virus dynamics in
control infrastructure,” Neural Comput. Appl., vol. 34, no. 7, pp. 5771-
5790, 2022.

S. Raponi, M. Caprolu, and R. D. Pietro, “Beyond solarwinds: The
systemic risks of critical infrastructures, state of play, future directions,”
in Proceedings of the Italian Conference on Cybersecurity, ITASEC
2021, All Digital Event, April 7-9, 2021, vol. 2940, 2021, pp. 394-405.
T. Siiskonen and M. Rantonen, “Detecting stuxnet-like data integrity
attacks,” Secur. Priv., vol. 3, no. 5, 2020.

J. Tian, R. Tan, X. Guan, Z. Xu, and T. Liu, “Moving target defense
approach to detecting stuxnet-like attacks,” IEEE Trans. Smart Grid,
vol. 11, no. 1, pp. 291-300, 2020.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on July 11,2024 at 08:22:38 UTC from IEEE Xplore. Restrictions apply.

