
Leaky Autofill: An Empirical Study on the Privacy Threat of
Password Managers’ Autofill Functionality

Yanduo Fu, Ding Wang
College of Cyber Science, Nankai University, Tianjin 300350, China; wangding@nankai.edu.cn

Key Laboratory of Data and Intelligent System Security (NKU), Ministry of Education, Tianjin 300350, China
Tianjin Key Laboratory of Network and Data Security Technology, Nankai University, Tianjin 300350, China

Abstract—Password managers (PMs) provide users with con-
venient and robust functionalities to manage their credentials,
highly recommended by security experts and major standard
bodies. One of the most popular features is the autofill
functionality, with which users need a single click or a few
clicks to fill in every field in web forms, facilitating the process
of completing web forms. However, such indiscriminate autofill
brings severe privacy threats. PMs may inadvertently fill data
into wrong fields in web forms, even hidden fields, potentially
leading to privacy leaks and credential theft.

In this paper, we conduct an empirical study evaluating the
effectiveness of 30 popular PMs in identifying and handling
hidden <input> fields. We focus on the privacy threats posed
by the autofill functionality, which fills data into hidden fields.
We develop a semi-automated autofill testing tool and explore
whether PMs autofill sensitive data into hidden fields across 15
concealment techniques and three web forms, including per-
sonal information, credit card, and login forms. Experimental
results reveal that every PM autofills data into hidden fields
in at least one web form, with an overall filled probability of
58.7% in 1032 scenarios. Further analysis reveals that login
forms are the most vulnerable, with a 65.7% probability of
hidden fields autofill. Hidden fields concealed by clip-path
and content-visibility are filled with passwords by all
PMs. Besides, built-in-browser PMs exhibit a 4.07 times higher
likelihood of filling data into hidden fields than separately-
installed PMs. Even more concerning, built-in-browser PMs,
except Safari, autofill passwords into hidden fields under
any concealment technique. 37.7% of autofill scenarios with
insufficient user interaction pose heightened privacy threats,
as users are unaware of autofill content. These privacy threats
have been confirmed by popular PMs like LastPass.

To mitigate the threats brought by the autofill function-
ality, we present two actionable recommendations for PM
operators/developers: (1) providing fine-grained data types
in rendered overlays before autofilling; (2) integrating visual
language model techniques to accurately identify fillable fields
and prevent data autofilling into hidden fields. We believe
this work makes a substantial step toward understanding the
security implications of the autofill functionality in PMs.

Index Terms—User Authentication, Password Manager, Autofill

1. Introduction
Passwords play a pivotal role in human’s digital life. The

number of password accounts that common users maintain
has increased to 80-112 per user before COVID-19 [18],
[24], [43]. During the pandemic, with more and more
services made online and people working at home, NordPass
reports that this number has increased to 168 in 2024 [60].
Such an increase poses a significant cognitive burden, and
exacerbates users’ vulnerable behaviors of choosing popular
passwords [61], reusing passwords [42], [63], and utilizing
personal information to create passwords [62]. All this poses
significant security threats [2], [29], [66].

Password managers (PMs), serving as a solution to mit-
igate the security and usability dilemma of passwords,
have gained increasing adoption due to their ability to
store and manage login credentials securely, alleviating the
burden of remembering and managing multiple credentials
(e.g., username and password) [58]. A desirable feature
driving PM usage is its convenient autofill functionality
[30], [45], [48], [49], capable of filling various web forms
automatically. Users typically need a single click or a few
clicks to trigger the autofill functionality. Then, the PM fills
in every detected field in the web form using stored data, sig-
nificantly reducing the effort of repetitive manual input [65].
Most PMs provide login credential autofill functionality.
Advanced PMs (e.g., 1Password [32] and LastPass [25]) also
support autofilling personal information, credit card details,
passports, driver licenses, and other information, being a
well received input method for users [28].

While convenient, recent studies indicate that such in-
discriminate autofill can be exploited by attackers, leading
to privacy leaks and credential theft. At PETS’20, Acar
et al. [4] summarized their previous findings in 2017 [3]
and reported that malicious third-party scripts can insert
invisible login forms into web pages. Built-in-browser PMs
may imprudently autofill stored usernames and passwords
into injected forms on page load. Then, the credential is
sent to the attacker-hosted remote server. At ACM CCS’20,
Lin et al. [27] showed that built-in-browser PMs and two
popular separately-installed PMs (i.e., 1Password [32] and
LastPass [25]) fail to identify hidden fields (e.g., covered
by overlays) when filling in personal information and credit
card details in web forms. This leads to the leakage of

288

2024 Annual Computer Security Applications Conference (ACSAC)

2576-9103/24/$31.00 ©2024 IEEE
DOI 10.1109/ACSAC63791.2024.00037

20
24

 A
nn

ua
l C

om
pu

te
r S

ec
ur

ity
 A

pp
lic

at
io

ns
 C

on
fe

re
nc

e
(A

C
SA

C
) |

 9
79

-8
-3

31
5-

20
88

-5
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

C
SA

C
63

79
1.

20
24

.0
00

37

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

Password Manager

CREDENTIAL
Username: m.smith@gmail.com
Password: Michael1985
URL: https://example.com

Michael1985

Username

Password

SUBSCRIPTION FORM

Michael Smith

Sign Up

PERSONAL INFORMATION
Name: Michael Smith
Email: m.smith@gmail.com
Telephone: (415) 555-1234
Street Address: 456 Oak Avenue
City: San Francisco, CA 84107 (415) 555-1234

Name

Telephone

SIGNUP FORM

m.smith@gmail.com

San Francisco, CA 84107

Name

Email

m.smith@gmail.comEmail

City

456 Oak Avenue

Email
City

Street Address

Malicious Browser Extension

Autofill Data Into Web Forms Inject Hidden Fields Into Forms

Subscribe

Figure 1: Our threat model of malicious browser extensions:
the attacker injects hidden fields into forms, misleading the
PM into erroneously detecting the form type. This exploita-
tion of the autofill functionality allows the extensions to
obtain sensitive data that should not have been filled in.

sensitive information (e.g., phone, address, and credit card
number) while users are only aware of visible fields for less-
sensitive information (e.g., username and credit card name).
Looking further back, at AsiaCCS’14, Stock and Johns [57]
demonstrated that XSS attackers could drive PMs to autofill
credentials in login forms and obtain filled passwords. They
also discussed real-world threats by exploring the autofill
functionality of six built-in-browser PMs.
Motivations and Research Questions. Prior research [4],
[27], [57] has revealed that built-in-browser PMs struggle
to detect hidden form fields accurately and can be exploited
by client-side attackers (e.g., XSS attackers), leading to
user privacy leaks and credential theft. With the increasing
adoption of separately-installed PMs (e.g., 1Password [32]
and LastPass [25]) [58], a natural question arises: Do
these perceived more secure [30], [48] separately-installed
password managers possess a more robust ability to detect
and handle hidden form fields? In this paper, we conduct
the first empirical research on the autofill functionality of
separately-installed PMs, examining their ability to detect
and handle hidden fields and measuring the extent of real-
world security and privacy threats raised.

An attack example. To gain an intuitive grasp of such
threats, we consider an attacker capable of injecting hidden
fields into web pages to collect sensitive information, such
as malicious browser extensions. Taking 1Password browser
extension version 2.23.3 [32] as an example, the PM dis-
plays a PM icon in the email field of the subscription form
and renders an overlay similar to that of the login form (see
Figure 6(c) in Appendix B). The attacker can inject a hidden
password field in the subscription form and the PM would
then autofill the stored password into the injected field with-
out modifying the web page layout or alerting users. When
sensitive information is filled into unexpected hidden fields,
the credentials are likely obtained by malicious extensions.1
Figure 1 presents the attack method and operations.

1. We have reported this privacy threat to 1Password. They respond that
this practice involves performance and user experience consideration.

This attack can stealthily exfiltrate sensitive information
without users’ awareness, especially when the autofill func-
tionality lacks sufficient user interactions (e.g., presenting
the types of data to be autofilled) and cannot effectively
detect hidden fields. This also violates the “transparency”
security principle in GDPR [15] and the “right to know”
privacy rights in CCPA [9] when handling user data.

Thus, it is critical to evaluate separately-installed PMs’
ability to detect and handle hidden fields and the strength of
their interaction with users. In all, our work aims to address
three main research questions (RQ):
RQ1: Do password managers provide detailed information

about the ready-to-filling data and require user inter-
action when providing the autofill functionality?

RQ2: How well do separately-installed password managers
detect hidden fields concealed by various techniques?
Do results differ among web form types?

RQ3: Do separately-installed password managers behave bet-
ter than built-in-browser password managers? Have
built-in-browser password managers improved since the
vulnerability disclosure at ACM CCS’20 [27]?

Methods. To answer the above questions, we first select 30
popular PMs (including 24 separately-installed PMs) and
explore their autofill functionality. Specifically, we focus
on the autofill functionality triggering method and user
interaction strength. The latter includes the detailed infor-
mation displayed in the rendered overlay and whether the
PM presents warnings or requires re-authentication before
autofilling (RQ1). Then, we expand the eight concealment
techniques of Lin et al. [27] to fifteen and develop a semi-
automated tool to assess whether PMs autofill stored sensi-
tive information into invisible <input> fields hidden using
15 concealment techniques in three web forms, including
personal information, credit card, and login forms.

Next, we conduct a χ2 test on our experimental results to
understand the differences in the filled probability between
different PM types, form types, and concealment techniques
(RQ2). We employ linear regression and decision tree
analysis to gain further insights. We also assess whether
there have been any improvements in built-in-browser PMs
since 2020 [27] (RQ3). Besides, we analyze whether there is
a difference when adding hidden style to <input> fields’
ancestors instead of fields themselves. Finally, we study the
visibility check mechanism of five open-source PMs.
Findings. The tested 30 PMs provide the autofill function-
ality in 69 out of 90 scenarios (=3 form types × 30 PMs).
All PMs in credit card forms exhibit strong interaction with
users. However, in 26 scenarios, the interaction strength with
users is insufficient: PMs in 53.3% (=16/30) of login forms
exhibit weak interaction, either autofilling on page load (10)
or rendering overlays without any details about the filled
data (9), with three failing in both scenarios. For personal
information forms, one PM does not inform users of the
form type, and nine PMs only inform users of the form
types without specifying the filled data types.

Moreover, 83.3% (=25/30) PMs can detect hidden fields
concealed via display:none and visibility:none

289

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

CSS properties, and HTML hidden property in at least
one form. However, the other 12 (=15-3) techniques are
challenging to detect, such as fields covered by overlay
and with clip-path property. Separately-installed PMs
are 4.07 (=(216/51)/(390/375), see Sec. 4.1 for details)
times less likely to autofill data into hidden fields than
built-in-browser PMs. Login forms are the most vulnerable
due to weak user interaction and poor detection of hidden
fields. Moreover, there are no significant improvements in
the detection mechanism of built-in-browser PMs compared
with Lin et al.’s findings [27]. There is also no notable dif-
ference between hiding <input> fields by directly adding
properties to the fields and their ancestor nodes. These
findings underscore the serious privacy threats and credential
theft risks posed to users when weak user interactions
accompany the autofill functionality into hidden fields.

We have reported our findings to several PM opera-
tors. LastPass [25] has confirmed our findings but has
not resolved them. Other operators, such as 1Password
[32] and Bitwarden [7] who have responded to us, claim
that comprehensive visibility checking may compromise
performance and user experience.
Contributions. We make the following contributions:
(1) New findings and insights. We conduct an empiri-

cal study on the autofill functionality of 24 popular
separately-installed PMs, for the first time focusing on
whether they autofill data into web forms containing
hidden fields. We also expand Lin et al.’s work [27] on
six built-in-browser PMs. Our research reveals that no
PM can completely avoid autofilling data into hidden
fields across all three web forms and 15 conceal-
ment techniques. Login forms and personal information
forms with insufficient user interaction are more likely
to be exploited by attackers. PM operators could learn
from our new findings to balance the security and
usability of their visibility-checking mechanisms.

(2) A semi-automated tool for password manager (PM)
autofill functionality testing. We develop the first, to our
knowledge, semi-automated PM autofill functionality
testing tool, which significantly alleviates the testers’
burden of manually clicking and recording data. Al-
though our tool aims to detect whether PMs autofill
data into hidden fields, common operations, including
triggering the autofill functionality and recording the
filled results, are quite similar. Thus, our tool can be
applied in recent empirical PM studies [20], [21], [41].

(3) New perspective of countermeasures. We propose two
actionable recommendations to PM operators to miti-
gate threats brought by the autofill functionality: (1)
providing fine-grained details of filled data type in
the PM-rendered overlay and (2) employing the visual
language model technique to analyze which web form
fields should be filled with stored data.

Ethical Considerations. All experiments are conducted
within a controlled environment designed for our research
purposes, and the tested accounts belong to testers. Thus,
our experiments cause no harm to other PM users and real-

Identity Information Form

Phone number

Name

Street Address

Email

Submit

456 Oak Avenue
Michael Smith

Manage address

Identity Information Form

(415) 555-1234Phone number

Name Michael Smith

Street Address 456 Oak Avenue

Email m.smith@gmail.com

Submit

Autofill

Figure 2: Users need to click the form field to trigger
the PM’s autofill functionality. Then, users could click the
rendered overlay to fill the data into the form automatically.

world website users. All personal information shown in all
figures is fake and generated randomly.
Open Source. We release the source code of our semi-
automated autofill testing tool at https://github.com/Leaky
-Autofill/LeakyAutofill-Artifact with detailed documents.

2. Background and Threat Model
In this section, we first introduce the background on

password managers and the autofill functionality, and then
present the threat model and scope considered in this paper.

2.1. Password Managers
Password managers (PMs) assist users in handling pass-

word management tasks, such as securely memorizing pass-
words using encrypted storage, generating strong and unique
passwords, and facilitating password input through autofill
functionality. These tools are highly recommended by secu-
rity experts [22], [31] and major standard bodies [8], [12],
[40], and have gained a higher adoption rate among common
users recently [58]. In this paper, we focus on the autofill
functionality in web forms and categorize PMs into two
categories: (1) Built-in-browser PMs (e.g., Chrome, Safari2,
and Firefox) are integrated into web browsers and function
as a browser module, gaining higher adoption rate among
users [58]; (2) Separately-installed PMs (e.g., 1Password
[32] and LastPass [25]) are external applications that require
installation and generally provide password management
services via browser extensions.

2.2. Autofill Functionality
Most PMs provide autofill functionality to assist users

in filling information into web forms, such as credentials,
personal information, credit card details, and passports. To
use the autofill functionality, users first need to store the
information in the PM by manually entering and importing
it, or through prompts for storage upon initial input on web
forms. When revisiting pertinent web pages, PMs render
an overlay, and prompt users to autofill their information.
Generally, users need a single click (or a few clicks) to fill
every field in a web form. For instance, Figure 2 presents a
personal information web form. When (1) the user clicks on
the name field and triggers the autofill functionality, (2) she

2. Prior studies [30], [37], [45], [48] consider Safari’s PM as part of
OS-integrated PMs, provided by the macOS’s KeyChain. However, as we
focus on web scenarios, we regard Safari as a browser-based PM here.

290

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

only needs one click on the rendered overlay, and (3) the
PM automatically fills stored information into every detected
field in the web form. Note that credentials are bound to
the domain names. Thus, the password stored for website
A cannot be autofilled into website B. In contrast, personal
information and credit card details are associated with the
PM account and can be autofilled across various websites
when the information is stored in the PM.

During autofilling, PMs identify the form type and fields
to be filled using various methods (e.g., Fathom for Firefox
[35]), then autofill each field matched with stored data. In
this paper, we consider that PMs can correctly detect form
and field types, and focus on the privacy threats posed by
the autofill functionality in identifying hidden fields in forms
(i.e., PMs may mistakenly fill sensitive data into hidden
fields, leading to user privacy leaks and credential theft).

In this paper, we select 24 popular separately-installed
PMs based on the active user count. Additionally, we
include the six browsers in Lin et al.’s study [27] to
evaluate the differences between separately-installed PMs
and built-in-browser PMs. We also explore whether there
are improvements in the latter.

2.3. Threat model and scope
We consider an attack scenario involving hidden HTML

fields on web pages. It consists of two cases.
First, curiosity-driven websites aim to acquire sensitive

information without users’ awareness by injecting concealed
fields into the webpage and exploiting the autofill function-
ality to obtain the filled sensitive information. In this case,
curiosity-driven websites are less likely to collect users’
credentials but other sensitive information such as address,
telephone, and credit card numbers. This aligns with the
threat model of Lin et al.’s [27]. Their study shows that
when considering personal information forms and credit
card forms in the Chrome browser, 3.3% (2,776 out of
83,054) of web pages have hidden fields filled by browsers.
Moreover, Senol et al. [51] have shown that web trackers
on thousands of websites collect users’ email addresses
before form submission. This indicates that curiosity-driven
websites could leverage the scenario that PMs autofill data
into hidden fields to obtain users’ sensitive information.

Additionally, we consider malicious extensions or any
third parties capable of injecting hidden fields into web
forms. For instance, in Figure 1, users have stored personal
information and credentials in PMs. By employing con-
cealment techniques (e.g., clip-path:inset(100%);
position:absolute CSS property), adversaries can in-
ject concealed <input> fields into targeted forms on page
load without modifying the webpage layout. Then, when
users trigger the autofill functionality, the corresponding data
will be filled into the injected fields. Our observation reveals
that most (61 out of 69) autofill scenarios fill data into
<input> fields hidden using the clip-path property.
Consequently, these hidden fields are erroneously filled
with users’ sensitive data, enabling malicious extensions to
obtain user-sensitive information. In this case, attackers are

not limited to stealing credentials on login pages but also
obtaining sensitive information filled in registration pages.

In real-world scenarios, such malicious extension requires
host-permissions with <all_urls> to conduct the attack
on as many websites as possible or requests several URLs
for targeted attacks (in a version 3 manifest.json file),
but requires no further sensitive permissions. According to
the study at AsiaCCS’24 [19], the host-based permission
<all_urls> is the most popular among benign Chrome
browser extensions and the third most popular among vul-
nerable extensions. Besides, a recent study at WWW’24 [39]
highlights that malicious extensions can bypass the Chrome
Web Store’s security check by masking extensions with
benign purposes. Several malicious extensions have been
found to be active within the Chrome Web Store in recent
years [59]. Thus, our considered malicious extensions are
feasible and practical in real-world scenarios.

The essential exploitation of this attack is that PMs
autofill data into hidden fields. Note that although browser
extensions are popular and easily distributed through the
Web Browser Store and there are some studies [34], [39] to
conduct the attack through malicious third-party scripts, we
do not focus on how the attacker tricks users into running
third-party scripts or installing malicious extensions on the
client side. In contrast, we aim to reveal real-world security
and privacy threats posed by the autofill functionality. Thus,
we explore the strength of user interaction in the autofill
functionality, including the autofill triggering method and
details displayed in overlays. When PMs have weak in-
teraction with users (i.e., PMs do not inform users which
data will be filled or autofill on page load), sensitive data
will be leaked without user awareness. Besides, as the PM’s
adoption rate is increasing [58] and autofill is one of the
most favorable features [30], [45], [48], the threat brought
by the autofill functionality will arise real-world risks.

3. Methodology
We first present the password manager (PM) selection

process. Then, we conduct experiments to evaluate the
default autofill functionality of selected PMs across three
types of web forms: login forms, personal information
forms, and credit card forms. Finally, we assess whether
PMs would inadvertently autofill data into hidden fields
concealed using various techniques.

3.1. Choosing Password Managers
We select separately-installed PMs that provide browser

extensions in the Chrome Web Store. This selection is driven
by the fact that web pages accessed through browsers serve
as a representative scenario for autofill functionality, and
Chrome has the highest browser market share [56]. Lever-
aging the ChromeStats tool [11], which has been recently
utilized for a large-scale evaluation of Chrome browser
extensions [19], we search for PMs with at least 100,000
(100k) active users. The search is conducted in February 29,
2024 using the keywords “password”, “password-protected”,
and “password manager” on https://bit.ly/3B8Li4T .

291

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: Selected password managers, default autofill behaviors, and the interaction strength∗.

Name Info† Version Personal Info Credit Card Login

Method‡ Detail Prompt Level♮ Method Detail Prompt Level Method Detail Prompt Level

LastPass: Free Password Manager 10,000k 4.130.2.1 ClickIcon ⋄ Warn S ClickIcon ✓ Warn S On load ✓ ⊘ W
Avira Password Manager 6,162k 2.20.0.4570 - - - - - - - - On load ✓ ⊘ W
Norton Password Manager 5,194k 8.2.0.161 - - - - ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S
1Password – Password Manager 4,443k 2.23.3 ClickIcon × ⊘ W ClickIcon ✓ Warn S ClickIcon × ⊘ W
Bitwarden - Free Password Manager 3,903k 2024.4.1 RightClick ⋄ ⊘ M RightClick ✓ ⊘ S ClickIcon × ⊘ W
Kaspersky Password Manager 2,385k 24.0.128.1 ClickIcon1 ✓ ⊘ S ClickIcon1 ✓ Warn S On load × ⊘ W
Dashlane — Password Manager 2,194k 6.2418.0 ClickIcon ⋄ ⊘ M ClickIcon ✓ Mpw S On load ✓ ⊘ W
iCloud Passwords 2,035k 2.2.9 - - - - - - - - ClickIcon ✓ ⊘ S
Keeper Password Manager & Digital Vault 1,343k 16.8.3 RightClick ⋄ Warn S RightClick ✓ Warn S ClickIcon ✓ ⊘ S
MultiPassword — Password manager 1,288k 0.97.4 - - - - - - - - ClickIcon × ⊘ W
True Key by McAfee 801k 4.3.1.9339 - - - - - - - - On load × ⊘ W
RoboForm Password Manager 665k 9.5.9.2 ClickIcon ⋄ ⊘ M ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S
DualSafe Password Manager & Digital Vault 494k 1.4.28 - - - - - - - - On load × ⊘ W
NordPass (desktop app version) 460k 5.15.28 ClickIcon ⋄ ⊘ M ClickIcon1 ✓ ⊘ S ClickIcon ✓ ⊘ S
ExpressVPN Keys: Password Manager 391k 2.0.12.715 - - - - ClickIcon ✓ ⊘ S ClickIcon × ⊘ W
Dropbox Passwords 374k 3.26.0 - - - - ClickIcon ✓ ⊘ S On load ✓ ⊘ W
KeePassXC-Browser 369k 1.9.0.4 - - - - - - - - ClickIcon × Warn S
NordPass Password Manager & Digital Vault 239k 5.15.29 ClickIcon ⋄ ⊘ M ClickIcon1 ✓ ⊘ S ClickIcon ✓ ⊘ S
Passbolt - Open source password manager 233k 4.7.7 - - - - - - - - ClickIcon ✓ Mpw S
Proton Pass: Free Password Manager 210k 1.14.1 - - - - - - - - ClickIcon ✓ ⊘ S
Microsoft Autofill 140k 2.0.5 ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S
Zoho Vault 134k 4.0 - - - - ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S
Enpass Password Manager 124k 6.9.3 RightClick ⋄ ⊘ M ClickIcon ✓ ⊘ S ClickIcon × ⊘ W
Password Manager SafeInCloud 107k 24.1.0 - - - - Extension ✓ ⊘ S Extension × ⊘ W

Google Chrome 65.38% 124.0.6367.119 ClickIcon ⋄ ⊘ M ClickIcon ✓ ⊘ S On load ✓ ⊘ W
Microsoft Edge 12.75% 123.0.2420.81 ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S On load ✓ ⊘ W
Safari 8.72% 17.3.1 ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S
Mozilla Firefox 7.26% 125.0.3 ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S
Opera 3.05% 109.0.5097.80 ClickIcon ⋄ ⊘ M ClickIcon ✓ ⊘ S On load ✓ ⊘ W
Brave - 1.65.130 ClickIcon ⋄ ⊘ M ClickIcon ✓ ⊘ S ClickIcon ✓ ⊘ S

∗ ‘-’: Not applicable due to not being autofillable; ✓: Clear indication of filled form and data type; ⋄: Only indication of filled form type; ×: No indication of what form and data will be filled;
‘Warn’: Warning dialog pops up before filling the form; ‘Mpw’:Master password required before filling the form; ⊘: No warnings shown, or permission and re-authentication required.

† Active users of Chrome browser extensions for 24 separately-installed PMs from ChromeStats [11] and market share of six browsers with built-in PMs sourced from StatCounter [56].
‡ Autofill triggering method. ‘On load’ means that the information is filled into the fields when the web page loads; ‘ClickIcon’ means users need to click the PM icon in the web form field or

click the field to trigger the autofill functionality; ‘ClickIcon1’ means that the PM icon only appears in the targeted sensitive field; ‘RightClick’ means that users need to right-click the web
page to select the PM menu to trigger the autofill functionality; ‘Extension’ means that users need to click the extension in the browser menu bar to trigger the autofill functionality.

♮ W means the PM has Weak user interaction strength for autofill functionality in this form, M for Medium interaction strength, and S for Strong interaction strength.

After excluding extensions with fewer than 100k active
users, our screening process identifies 26 browser extensions
categorized as password management software based on
their descriptions in ChromeStats. Subsequently, we install
each extension in a fresh Chrome browser instance to ensure
that they function correctly and provide autofill functional-
ity. During this process, we further exclude two extensions:
“Delinea Web Password Filler” and “Passwordstate”, as they
are enterprise-focused PMs that fall outside the scope of our
study. Additionally, we include the six browsers evaluated
by Lin et al. [27] in our analysis. Consequently, we obtain 30
password managers (PMs) for further experiments. Detailed
information about each PM is presented in Table 1.

3.2. Default Autofill Behaviors
As our research aims to investigate PMs’ ability in

identifying and handling hidden fields within web forms,
we first explore the default autofill behaviors of PMs across
various web forms to understand how PMs interact with
standard web forms. Specifically, we assess whether PMs
can successfully autofill each kind of form, and record the
default methods for triggering the autofill functionality. This
includes whether the autofill functionality presents warnings
for users or requires re-authentication. Additionally, we
record whether PMs prompt users with information about
the categories of data being filled (e.g., password, address,
phone, and credit card number). These factors indicate the
strength of interaction with users, which are critical in
evaluating potential real-world threats exploiting the autofill
functionality without user awareness.

To ensure the autofill functionality of all PMs works well,
we deploy our test website based on the autofill functionality
testing website https://fill.dev (including various
web forms), provided by one popular PM 1Password [32]
with over 15 million users [1]. Then, we store fake informa-
tion in the PMs for each form, and conduct experiments for
each PM in a fresh browser instance generated by Selenium
framework [50] to maintain a consistent initial state.

Experimental results for the default autofill behaviors are
detailed in Table 1, and answers RQ1: All 30 PMs could
complete the autofill process in 69 out of 90 scenarios (17
PMs for personal information forms, 22 PMs for credit card
forms, and 30 PMs for login forms). There are four methods
to trigger the autofill functionality: autofilling on page load
(10), clicking the field or the PM icon on the form field (52),
right-clicking the webpage and selecting to autofill in the
web form (5), and clicking the extension icon on the browser
address bar (2). PMs display different overlay styles, such as
what data will be filled into the form, indicating the strength
of user interaction. Based on the strength, we categorize the
autofill functionality into three types (“Level” column in
Table 1): (1) Weak, autofilling data on page load or without
any information or warnings about the form type (Value “On
load” in the “Method” Column or Icon × in the “Detail”
column); (2) Medium, requiring users to click or right-click
to trigger the autofill functionality, yet providing unclear
information about the filled data type (Icon ⋄); (3) Strong,
providing users with clear information about form type and
data type, or warnings for users (Icon ✓, or value “Warn”
and “Mpw” in the “Prompt” Column).

292

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

TABLE 2: Results of our autofill testing experiments, where <input> fields are directly hidden∗.
Form Type Personal Information Credit Card Login Information

Concealment Tech.† D
is

pl
ay

:N
on

e

V
is

ib
ili

ty
:H

id
de

n

V
is

ib
ili

ty
:C

ol
la

ps
e

O
pa

ci
ty

:0

C
ov

er
ed

by
O

ve
rl

ay

N
on

-E
ff

ec
tiv

e-
Si

ze

O
ff

-S
cr

ee
n

A
nc

es
to

r-
O

ve
rfl

ow

H
id

de
n

C
SS

C
lip

C
SS

C
lip

-P
at

h

C
SS

Tr
an

sf
or

m

Fo
nt

Si
ze

:0
C

on
te

nt
-V

is
ib

ili
ty

Ti
ny

-S
iz

e

D
is

pl
ay

:N
on

e

V
is

ib
ili

ty
:H

id
de

n

V
is

ib
ili

ty
:C

ol
la

ps
e

O
pa

ci
ty

:0

C
ov

er
ed

by
O

ve
rl

ay

N
on

-E
ff

ec
tiv

e-
Si

ze

O
ff

-S
cr

ee
n

A
nc

es
to

r-
O

ve
rfl

ow

H
id

de
n

C
SS

C
lip

C
SS

C
lip

-P
at

h

C
SS

Tr
an

sf
or

m

Fo
nt

Si
ze

:0
C

on
te

nt
-V

is
ib

ili
ty

Ti
ny

-S
iz

e

D
is

pl
ay

:N
on

e

V
is

ib
ili

ty
:H

id
de

n

V
is

ib
ili

ty
:C

ol
la

ps
e

O
pa

ci
ty

:0
C

ov
er

ed
by

O
ve

rl
ay

N
on

-E
ff

ec
tiv

e-
Si

ze

O
ff

-S
cr

ee
n

A
nc

es
to

r-
O

ve
rfl

ow

H
id

de
n

C
SS

C
lip

C
SS

C
lip

-P
at

h
C

SS
Tr

an
sf

or
m

Fo
nt

Si
ze

:0
C

on
te

nt
-V

is
ib

ili
ty

Ti
ny

-S
iz

e

LastPass × × ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ × ✓ × ×2×2 ✓ × ✓ ×2 ✓ ✓ ×2 ✓ ✓ ✓ ×2 ✓ ×2 × × ✓ ✓ ✓ × ✓ ✓ × ✓✓ ✓ × ✓ ×
Avira - × × ✓ ✓ ✓ ✓ ✓ ✓ × ✓✓ ✓ ✓ ✓ ✓
Norton - - - - - - - - - - - - - - - × × ✓ × ✓ × × × × × ✓ × ✓ ✓ ✓ × × ✓ × ✓ × × × × ×✓ × ✓ ✓ ✓
1Password × × ✓ ✓ ✓ ✓ × ✓ × × ✓ ✓ ✓ ✓ ✓ ×2×2 ✓ ✓ ✓ ✓ ×2 ✓ ×2×2 ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ × ✓ × ×✓ ✓ ✓ ✓ ✓
Bitwarden × × × × × × × × × × × × × ✓ × × × × × × × × × × × × × × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✓ ✓ ✓ ✓ ✓
Kaspersky ×3 × × × × ✓ × × ✓ × ×✓ × ✓ ✓ ✓
Dashlane × × × × ✓ × × ✓ × × ✓ × × ✓ × × × × × ✓ × × ✓ × × ✓ × × ✓ × × × × × ✓ × × ✓ × ×✓ × × ✓ ×
iCloud - × × × ✓ ✓ × × ✓ × ✓✓ ✓ ✓ ✓ ×
Keeper ×2×2 ✓ ×2 ✓ ×2×2 ✓ ×2 ✓ ✓ ×2×2 ✓ ×2 × × ✓ × ✓ × × ✓ × ✓ ✓ × × ✓ × × × ✓ × ✓ × × ✓ × ✓✓ × × ✓ ×
MultiPassword - × × ✓ × ✓ × × ✓ × ✓✓ ✓ × ✓ ×
True Key - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✓ ✓ ✓ ✓ ✓
RoboForm × × × × ✓ × × × × × ✓ × ✓ ✓ × ×2×2 × ×2 ✓ ×2×2×2×2×2 ✓ ×2 ✓ ✓ ×2 × × × × ✓ × × × × ×✓ × ✓ ✓ ×
DualSafe - × × × × ✓ × ✓ ✓ × ✓✓ × × ✓ ×
NordPass(Desktop) × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ×3×3×3×3×3×3×3×3×3×3×3×3×3×3×3 × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓✓ ✓ ✓ ✓ ✓
ExpressVPN Keys - - - - - - - - - - - - - - - × × ✓ × ✓ × × × × ✓ ✓ ✓ ✓ ✓ × × × ✓ × ✓ × × × × ✓✓ ✓ ✓ ✓ ×
Dropbox - - - - - - - - - - - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ × ✓ ✓ ✓ ✓ × ✓✓ ✓ ✓ ✓ ✓
KeePassXC - ×2×2×2×2✓×2×2×2×2✓✓×2×2✓×2

NordPass(Extension) × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ×3×3×3×3×3×3×3×3×3×3×3×3×3×3×3 × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓✓ ✓ ✓ ✓ ✓
Passbolt - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓✓ ✓ ✓ ✓ ✓
Proton Pass - × × ✓ ✓ ✓ × × ✓ × ✓✓ × × ✓ ×
Microsoft Autofill ✓ × × ✓ ✓ ✓ ✓ × ✓ × ✓✓ ✓ ✓ ✓ ✓
Zoho Vault - - - - - - - - - - - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ × × × × × ×✓ ✓ × ✓ ×
Enpass × × ✓ ✓ ✓ × × ✓ × ✓ ✓ × ✓ ✓ ✓ × × × ✓ × × × × × × × × × ✓ × × × ✓ ✓ ✓ × × ✓ × ✓✓ × ✓ ✓ ✓
SafeInCloud - - - - - - - - - - - - - - - ×2×2×2×2×2×2×2×2×2×2×2×2×2×2×2 × × × ✓ ✓ ✓ ✓ ✓ × ✓✓ ✓ ✓ ✓ ✓

Chrome × × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✓ ✓ ✓ ✓ ✓
Edge × × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✓ ✓ ✓ ✓ ✓
Safari × × × ✓ ✓ × ✓ ✓ × ✓ ✓ ✓ ✓ -1 × ×2×2×2 ✓ ✓ ×2 ✓ ✓ ×2 ✓ ✓ ✓ ✓ -1 ×2 × × × ✓ ✓ × × ✓ × ✓✓ ✓ ✓ -1 ×
Firefox ✓✓ ✓ ✓ ✓ ✓
Opera × × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✓ ✓ ✓ ✓ ✓
Brave × × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓✓ ✓ ✓ ✓ ✓

∗ ‘-’: Not applicable due to not autofillable; ✓: Vulnerable; ×: Not Vulnerable; -1 means that the PM does not support the content-visibility property and thus the field is visible;
×2 means that the PM fails to identify the web form type; ×3 means that the PM places autofill-triggering fields at our examining sensitive fields, and thus they are not vulnerable to our
considered threats. Note that the “Vulnerable” label means that the autofill functionality will bring security and privacy risks without considering user interaction strength. When the user
interaction strength is not Weak (see the “Level” column in Table 1), users may notice that the PM is autofilling unexpected information into web forms and promptly prevent such behavior.

† Concealment techniques in ‘Personal Information’, ‘Credit Card’, and ‘Login Information’ columns include the left eight from Lin et al. [27] and right seven newly considered in our work.

Every password manager (PM) presents explicit infor-
mation in credit card forms that this web form will be
autofilled with credit card details. However, in login forms
(16 out of 30) and personal information forms (10 out of
17), PMs sometimes autofill data into forms on page load
(10 PMs on login forms) or display overlays without explicit
information about the form type and filled data type (19,
including ten PMs on personal information forms and nine
PMs on login forms). For instance, the PM only displays
the item name and username on the rendered overlays in
the personal information form. However, it autofills sensitive
information such as phone numbers and street addresses into
the web form. This insufficient interaction strength poses
severe privacy threats to users.

3.3. <input> Field Concealment Techniques

The effectiveness of the autofill functionality depends
on the ability of password managers (PMs) to accurately
identify form fields and the fillable data types. Similar
to web browsers, it is also challenging for separately-
installed PMs to recognize hidden fields on web forms.
Beyond common CSS properties (e.g., display:none,

visibility:hidden), the detection mechanism needs
to consider fields covered by overlays or affected by the
visibility of ancestor nodes. In this paper, we focus on
the <input> field and expand upon Lin et al.’s eight
concealment techniques [27] to encompass 15 techniques.
We detail our newly considered techniques below, and
introduce Lin et al.’s methods in Appendix A. Note that
PMs may not account for the invisibility of an <input>
field caused by its ancestor elements. Thus, we discuss these
two cases in Section 4 and Appendix C, respectively.

HTML hidden property. The hidden property is an
HTML standard attribute designed to conceal elements
within a web page. When applied, the browser perceives
these elements as non-existent, omitting them from the
rendered page, and completely removing the occupied space.
Although the hidden property does not propagate through
the DOM like CSS property inheritance, its manifestation
inherently occludes the visibility of all descendant elements
nested within the targeted element.

CSS clip property. The clip property3 facilitates the se-

3. This feature is no longer recommended and removed from web
standards, but popular browsers support it partially for compatibility.

293

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

lective display of an element’s specific region by clipping the
remainder. This property is typically applied to absolutely
positioned elements (i.e., setting the position property
to absolute or fixed). By setting the clip:rect
values, one can define the top, right, bottom, and left
edges of the visible region. An element can be effec-
tively hidden by setting a rectangle of zero size (e.g.,
clip:rect(0,0,0,0)). Like the hidden property, the
clip property is non-inheritable from ancestor nodes, yet
it can affect its child elements.

CSS clip-path property. The clip-path property re-
places clip and enables precise control over the visible
region of an element by defining a clipping path. This
path delineates the portion of an element’s content that
should be visible, while concealing or clipping away regions
outside of this path. Setting clip-path:inset(100%)
or clip-path:circle(0) can conceal the element, but
leave the original space available. The clip-path is non-
inheritable, but can affect its child elements.

CSS transform property. The transform property al-
lows for the visual concealment of elements through trans-
formations, such as translation, rotation, and scaling. El-
ements can be proportionally enlarged or reduced in size
without affecting their original layout properties. For in-
stance, setting transform:scale(0) effectively hides
an element by scaling it down to zero size while preserving
its position in the layout. This property is not an inheritable
property, but it affects its child elements.

CSS font-size property. Setting font-size:0 renders
the text content invisible while preserving the element’s
layout space. The font-size property, alongside other
specified styles, such as border and background, col-
lectively contribute to achieving the desired visual effect
while maintaining the element’s layout space within web
pages. This property in <input> is inheritable from its
ancestor element if no such property is specified.

CSS content-visibility property. This property controls an
element’s rendering and its descendants’ content. Configur-
ing this property to hidden conceals the element and its
content, but the hidden element still occupies its original
space but is not rendered. The content-visibility
property is a non-inheritable property but has an impact on
child nodes. Note that the content-visibility prop-
erty is an experimental technology and is not yet supported
on the <input> fields on Safari browsers. Additionally,
this property is generally not used on <input> fields as
these fields are directly rendered by browsers. In our obser-
vation, when setting content-visibility:hidden to
<input> fields, the border of the<input> element is still
visible, but the filled text is invisible. Thus, when using
this property to completely hide an element, we need to
ensure that the <input> element has no other styles (e.g.,
border or background color) to make it visible. Nevertheless,
adding this property to the <input> element’s ancestor
node effectively hides this element from the web page.

Tiny size. Similar to Lin et al’s Non-Effectiveness-Size
case [27], elements with tiny size (e.g., width=1px) can be

concealed from the webpage. Note that the width of the
<input> element can be influenced by its ancestor node’s
width only when its width is set using a relative length
unit (e.g., em), which means the <input> element’s width
also changes. If the <input> element’s width is set with
a specific number, it will not be influenced by its ancestor’s
width. Thus, we regard this case the same as the case
where the <input> field is directly configured. We only
consider the influence of this concealment technique and
Non-Effectiveness-Size technique on the <input> element
instead of its ancestor nodes.

We first explore cases where only the input field is
configured as invisible without modifying the CSS property
of its ancestor element, and report results in Table 2. Then,
we report cases that input’s ancestor element is configured
as invisible using CSS property, making the input element
invisible from the web page. For ancestor elements, we drop
two cases that modify the width of the ancestor element to a
non-effective size or tiny size. This is because the width of
<input> field will be influenced by its ancestor element
only when it is set as relative length, which also means
the width of the <input> element is changed. Finally, we
discuss experimental results in appendix C.

3.4. Hidden fields autofilling in web forms
This paper considers password fields in login forms,

phone and address fields in personal information forms,
and credit card number fields in credit card forms as
sensitive information. We utilize the above 15 concealment
techniques to hide these fields from web pages. Then, we
trigger PMs to autofill corresponding web forms and record
whether hidden fields are filled with proper data.

We have identified 69 autofill scenarios in Sec. 3.2,
requiring us to trigger a total of 1,032 autofill operations
to fill forms (=69×15-3, where 15 refers to fifteen con-
cealment techniques for <input> fields4, and three for
Safari’s lack of support for the content-visibility
property). Manually verifying whether the data is filled
into hidden fields is inconvenient, as it necessitates open-
ing browser developer tools and executing commands like
document.getElementById("#id").value to re-
trieve the filled data. Thus, we implement a semi-automated
tool using Selenium [50] to automate interactions with
browser extensions, capture screenshots, and retrieve filled
data, making our analysis faster and more repeatable. Note
that PM extensions may require users to log in before using
the autofill functionality, which requires manual interven-
tion. Additionally, operations like clicking the extension icon
in the browser menu bar to trigger the autofill functionality
are inconvenient for end-to-end testing tools like Selenium
[50], Puppeteer [13], and PlayWright [33]. Consequently,
we manually trigger the autofill functionality and conduct
experiments for these specific cases.

We modify the autofill functionality testing form pro-
vided by 1Password [32] at https://fill.dev/ to

4. Incorporating the 13 concealment techniques for the ancestor elements
of <input> elements, we need to trigger 1,926 autofill operations.

294

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

Store Fake Data

Password Manager

Visit Website Without
Hidden Fields

m.smith@gmail.com

m.smith@gmail.com

Manage passwords

m.smith@gmail.com

m.smith@gmail.com

Manage passwords

Form Detection Fails

Analyze Default
Autofill Functionality

Screenshots

Visit Website With
Hidden Fields

Trigger

Autofill

Fail
Get Value of

Hidden Fields

Not Filled
× Not Vulnerable

 Vulnerable

Default Autofill Behavior

Trigger

Autofill

×

Figure 3: Our experimental process on the autofill functionality’s ability to detect and handle hidden fields on web forms.

accommodate our testing scenarios. Specifically, we use the
source code of our tested three web forms from this website,
apply various concealment techniques (i.e., CSS properties
or HTML properties) to hide sensitive <input> fields, and
create testing webpages. The testing process is detailed in
Figure 3. We initially store corresponding fake data in the
PM. Then, we manually check the autofill functionality in
a standard web form without any hidden fields, to ensure
it works well in standard forms. We record the default
autofill functionality trigger method and the style of pop-up
overlays. Subsequently, we utilize the semi-automated tool
to systematically test each concealment technique across
PMs and record whether data is filled into hidden fields.
Additionally, PMs such as Safari and Firefox will prompt
users with ready-to-fill data type in personal information
forms (such as “Also autofill address, phone” in Firefox).
We also record the pop-up overlays on web forms with
hidden fields. As expected, if PMs provide filled data type
details like Firefox and Safari, they will change the prompts
when hidden fields are not filled. We have provided the
artifact of our work [6], including the source code of our
semi-automated tool and the testing websites, and 24 PM
extensions in the Chrome browser used in our experiments,
associated with detailed documents.

4. Experimental results for autofill
We now delve into our experimental findings as detailed

in Table 2. We specifically focus on the results when the
<input> field is hidden due to its properties. Results of
ancestor elements’ impact are presented in Appendix C.

We aim to ascertain whether significant disparities exist in
the filled probability when encountering hidden fields con-
cerning: (1) the PM type (separately-installed (Extension)
and built-in-browser (Browser) PMs), (2) the web form type
(login (Login) forms, personal information (PII) forms, and
credit card (CVV) forms), and (3) 15 concealment tech-
niques. Since these analyses entail comparing proportions,
we employ the χ2 test to investigate whether significant
differences exist among them. To account for multiple
comparisons, we apply the Bonferroni correction, adjusting
alpha levels to 0.017 per test (=0.05/3). Additionally, we
also provide the filled results of different PM types, web
form types, and concealment techniques in Figures 4 and

5. The detailed filled probabilities are presented in Tables 4
and 5 in Appendix D. Our analysis addresses RQ2.

4.1. Differences between PM types
We test the following hypothesis to explore differences

between separately-installed PMs and built-in-browser PMs.
H0: The filled probability has no significant relationship
with the type of the password manager; Ha: The filled
probability has a significant relationship with the type of
the password manager.

We conduct a χ2 test and reject the null hypothesis H0

(χ2=71.859, p<0.01), indicating a significant relationship
between the filled probability and the PM type. The effect
size is weak (Cramer’s V=0.266). Therefore, we accept our
alternative hypothesis Ha that the filled probability differs
between separately-installed PMs and built-in-browser PMs.
Subsequently, we perform a binary logistic regression test
to assess the impact of various PM types. Results show
that built-in-browser PMs are significantly more likely to
fill in hidden fields compared to separately-installed PMs.
To provide a more intuitive explanation, we exponential-
ize these coefficients, and obtain the odd ratios: As the
number of testing samples increases, the filled probability
of built-in-browser PMs increases by approximately 4.07
(=(216/51)/(390/375), see Tab. 4 for more details) times
compared to separately-installed PMs. Moreover, as shown
in Figure 4(a), built-in-browser PMs are more likely to fill
in hidden elements regardless of whether we consider the
web form type and which form type we consider.
Takeaway. Built-in-browser PMs are more likely (∼4.07
times) to fill hidden fields than separately-installed PMs.

4.2. Differences between web form types
We test the hypothesis to explore differences among three

web forms. H0: The filled probability has no significant rela-
tionship with the web form type; Ha: The filled probability
has a significant relationship with the web form type.

We conduct a χ2 test and reject the null hypothesis H0

(χ2=22.897, p<0.01). The effect size is weak (Cramer’s
V=0.149). We accept our alternative hypothesis Ha that the
filled probability differs among the tested three web forms.
Then, we conduct logistic regression tests to evaluate that

295

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

ALL PII Form CVV Form Login Form
Web Form Types

0%

15%

30%

45%

60%

75%

90%

Pr
op

or
tio

n

Not Filled (EXTENSION)
Not Filled (BROWSER)

Filled (EXTENSION)
Filled (BROWSER)

Not Filled (EXTENSION)
Not Filled (BROWSER)

Filled (EXTENSION)
Filled (BROWSER)

(a) Filled results between separately-installed
(Extension) and built-in-browser (Browser) PMs.

ALL Extension Browser
Password Manager Types

0%

15%

30%

45%

60%

75%

90%

Pr
op

or
tio

n

Not Filled (PII)
Not Filled (CVV)
Not Filled (Login)

Filled (PII)
Filled (CVV)
Filled (Login)

Not Filled (PII)
Not Filled (CVV)
Not Filled (Login)

Filled (PII)
Filled (CVV)
Filled (Login)

(b) Filled results across personal information (PII),
credit card (CVV), and login (Login) forms.

Display:None

Visib
ility

:Hidden

Visib
ility

:Collapse
Opacity

:0

Covered-By-Overlay

Non-Effectiv
e-Size

Off-Screen

Ancestor-Overflow
Hidden

CSS-Clip

CSS-ClipPath

CSS-Tra
nsform

Font-Size-0

Content-Visib
ility
Tiny-Size

<input> Field Concealment Techniques

0%

15%

30%

45%

60%

75%

90%

Pr
op

or
tio

n

PII Form
CVV Form
Login Form

PII Form
CVV Form
Login Form

(c) Filled percentage in each kind of web form
under various concealment technique.

Figure 4: Analysis for experimental results when <input> elements are invisible due to their own property.

hidden fields in which web forms are more likely to be filled.
Our results show that hidden fields in credit card forms are
significantly less likely to be filled compared to login forms,
with odd ratios of 0.494. However, there is no significant dif-
ference between personal information and either credit card
forms or login forms. Though not statistically significant,
the odd ratio between personal information forms and login
forms is 0.765, indicating that hidden fields in login forms
are more likely to be filled in. In Figure 4(b), login forms
have the highest filled probability. For personal information
forms, two kinds of PMs autofill data into hidden fields with
a percentage of>50%. For credit card forms, separately-
installed PMs perform better (the filled probability<50%).

In addition to the relationship between filled probability
and web form types, not every PM supports the autofill
functionality for any of the three web forms: 17 PMs support
all web forms, 22 PMs support credit card forms and login
forms, and all 30 PMs support login forms. PMs capable of
filling at least two web forms may perform differently when
identifying hidden elements in various web forms. Exclud-
ing scenarios where autofill functionality is triggered in the
sensitive field, only Firefox, Norton, 1Password, Dashlane,
Keeper, ExpressVPN, and two NordPass extensions behave
consistently when facing different web forms. This indicates
that it is necessary to conduct experiments for each type
of web form. Additionally, among the six browser-based
PMs, only Safari could detect seven concealment techniques
in login forms, while the others fill passwords into hidden
fields concealed using each of the 15 techniques.
Takeaway. Hidden fields in credit card forms are signifi-
cantly less likely (0.494 times) to be filled than login forms.
There is no significant difference among other forms.

4.3. Differences between concealed techniques
We test the following hypothesis for differences between

fifteen concealment techniques. H0: The filled probability
has no significant relationship with the used concealment
technique; Ha: The filled probability has a significant rela-
tionship with the used concealment technique.

We conduct a χ2 test and reject the null hypothesis H0

(χ2=216.89, p<0.01). The effect size is moderate (Cramer’s
V=0.458). Therefore, we accept our alternative hypothe-
sis Ha that the filled probability differs among fifteen

concealment techniques. We then employ a decision tree
analysis to investigate the influence of concealment tech-
niques on filled probability. When <input> fields are
hidden using display:none, visibility:hidden,
or hidden, the filled probability is 21.74% (=45/207, see
Table 5), indicating PMs properly consider the three tech-
niques. Specifically, for separately-installed PMs, the filled
probability is only 15.69% under these three techniques.
For built-in-browser PMs, the filled probability is 16.7% for
personal information and credit card forms, yet 83.3% for
login forms. This indicates that built-in-browser PMs have
insufficient consideration about hidden fields in login forms.

For the other 12 techniques, the filled probability is 68%
(=561/825), which is relatively higher than the above three
techniques, indicating PMs have inadequate consideration
for these concealment techniques. The filled probability
for built-in-browser PMs is 91.5%. For separately-installed
PMs, properties covered-by-overlay, clip-path,
and content-visibility have a higher probability of
85.6%. More specifically, separately-installed PMs fill in
hidden fields in credit card forms with 36.1% probability.
Besides, under off-screen, non-effective-size,
and tiny-size techniques in personal information forms
and login forms, separately-installed PMs could detect the
hidden fields and would not autofill with 43% probability.

As shown in Figure 4(c), most PMs successfully detect
three specific concealment techniques: display:none,
visibility:hidden, and HTML hidden properties,
while lacking robust detecting methods for other 12 tech-
niques, particularly for login forms, where nine techniques
evade ⩾ 20 PMs. Besides, no techniques could deceive all
considered PMs in all kinds of web forms, and there are no
techniques detected by every PM in any web form.
Takeaway. 83.3% (=25/30) PMs successfully detect three
out of the 15 concealment techniques (display:none,
visibility:hidden, and HTML hidden) in at least
one form, but lack robust methods for other 12 techniques.

4.4. Improvements of built-in-browser PMs
Compared to Lin et al.’s study [27], there are no sig-

nificant improvements in identifying and handling hidden
elements for built-in-browser PMs. These PMs, except Fire-
fox, only avoid filling data into hidden fields concealed by
display and visibility CSS property, as well as the

296

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

HTML hidden property in personal information and credit
card forms, aligning with Lin et al.’s findings (see Table 1 in
[27] for more details). Only Safari has enhanced its ability to
detect elements of non-effective size or tiny-size and regard
them as invisible. However, these PMs perform poorly in
login forms, with only Safari detecting and stopping seven
concealment techniques. The other five PMs do not consider
handling hidden fields in login forms, potentially posing
severe risks to users’ credentials. Assisted with the analysis
of the differences between built-in-browser and separately-
installed PMs in Section 4.1, we answer RQ3.

4.5. Case Studies on Open-Sourced PMs
We present case studies for three open-source, separately-

installed PMs and two built-in-browser PMs, exploring their
element visibility checking mechanism, including Bitwar-
den [7], Passbolt [47], KeePassXC [23], Chromium-based
browsers [17], and Firefox [36].

1) Bitwarden: Bitwarden [7] does not autofill any sensitive
data in personal information and credit card forms except
for the content-visibility technique, but it autofills
passwords into hidden fields under any techniques. We con-
duct static and dynamic analysis on the source code of the
Bitwarden browser module [16]: Bitwarden develops three
functionalities to check if a form field is viewable, including
whether the element is within the viewport bounds, hidden
by CSS, and not hidden behind another element.5

Despite autofilling passwords into hidden fields, Bit-
warden can detect hidden password fields in login forms.
Specifically, Bitwarden detects visible password fields first.
If no visible password fields are found, it searches for hidden
password fields6 on the web page. Once found, Bitwarden
will also autofill passwords into hidden fields. We report this
issue to Bitwarden. They respond that their practice is for
performance and usability considerations. They also claim
that two-step authentication may require passwords to be
autofilled even if the password fields are invisible.

2) Passbolt: Passbolt [47] is relatively secure when con-
ducting autofill functionality, as shown in Table 1. It only
supports autofill functionality in login forms, presenting
clear prompts for the form type and requiring a master
password before autofilling by default, indicating strong
interaction with users. However, Passbolt autofills passwords
into hidden password fields concealed by 14 out of 15
techniques (only detecting and handling HTML hidden
property). For ancestor nodes’ influence, Passbolt even
autofills passwords into hidden fields concealed by any of
the considered 15 techniques. Our static analysis of the
source code reveals that Passbolt does not implement a
proper mechanism to detect hidden fields.

3) KeePassXC: KeePassXC [23] also only provides aut-
ofill functionality for login forms, and we delve into its
source code to explore the visibility mechanism. KeePassXC

5. The isFormFieldViewable functionality in the source code can
be found in https://bit.ly/3Wekxop in Bitwarden Github repository.

6. The generateLoginFillScript functionality in the source
code can be found in https://bit.ly/4bebjwB in Bitwarden Github repository.

has implemented a mechanism to check whether the element
is within the web view. Additionally, it also checks the
visibility and opacity of this element. However, it
does not consider the elements hidden by newly considered
techniques such as clip and clip-path and the influ-
ence of ancestor nodes. We provide methods to improve the
element visibility detection mechanism [23] to KeePassXC
developers. However, they respond that a comprehensive
visibility check may be very slow and costly, and their
practice is a compromise to quick element visibility check
without slowing down the extension.

4) Chromium-based browsers: PMs built in Chromium-
based browsers (i.e., Chrome, Edge, Brave, and Opera)
autofill passwords into hidden fields regardless of the con-
cealment technique. For personal information and credit card
forms, PMs could detect fields concealed by display,
visibility, and hidden properties.

We search for the visibility check function in Chromium
source code [17]. During our static analysis, we identify a
“IsWebElementVisible” function in “form autofill util.cc”7,
which detects the visibility of web elements. This function
checks whether a <input> element’s dimensions and scroll
size are greater than or equal to 10 pixels. This method
primarily relies on inspecting the size of the element to
check the visibility. Thus, this function could check elements
concealed by visibility, display, and hidden prop-
erties. However, other field concealment techniques are more
challenging to detect with this function.

5) Firefox browser: We conduct a static analysis on the
source code of Firefox browser [36]. The fillFields
function in “FormAutofillHandler.sys.mjs” is responsible for
populating autofillable form elements. Before conducting
autofilling, this function invokes the “isFieldAutofillable”
function located in “FormAutofillUtils.sys.mjs”, which pri-
marily checks whether the element exists, is not marked as
readonly, and is not disabled. Although the second
file defines a function named isFieldVisible, which
evaluates the element’s opacity and visibility CSS
property, this function is not utilized in the autofill process.

Our static analysis concludes that Firefox’s autofill func-
tionality does not perform element visibility checks when
autofilling form fields. This finding is consistent with our
experimental results: Firefox autofills data into hidden fields
regardless of the concealment technique.

4.6. Responsible Disclosure
We responsibly disclose the privacy threats we identify to

PM operators or developers. Several PMs have responded
to our disclosures. LastPass [25] has confirmed this issue
but has not resolved it. 1Password [32] responds that a
compromised client-side is not considered in their security
model. They believe that once the user chooses to use the
autofill functionality, the burden of ensuring security rests on
the users. Other PMs, such as KeePassXC and Bitwarden,
respond that their implementation primarily considers the
balance between user experience, performance, and security.

7. Located in “chromium/src/components/autofill/content/renderer/”.

297

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

5. Countermeasures
PMs could address autofill issues by considering various

concealment techniques to ensure only visible fields are
filled. However, as several PMs have noted, such compre-
hensive considerations may introduce performance issues
and suboptimal user experiences. Gautam et al. [14] recently
proposed countermeasures against malicious client-side at-
tackers aiming to steal PM-filled data: One effective method
involves PMs autofilling nonces and relying on browsers to
replace them with passwords before sending web requests.
However, this approach requires browser modifications. Be-
sides, non-PM users who fill forms manually would not
be protected by this method, as it requires PMs to register
nonces initially and later autofill data into web forms.

We provide countermeasures to mitigate potential threats
brought by the autofill functionality from two aspects.

1) Increasing user interaction strength. When PMs pro-
vide strong user interaction during autofilling, such as
providing detailed information about what form and data
to be filled, providing users with clear warnings or alerts,
or preventing autofill on page load, issues revealed in
this paper are unlikely to pose significant privacy threats.
Particularly, displaying the form type and filled data type
before autofilling is a practical approach to prevent users
from filling data into hidden fields. Thus, this method could
enhance the security of PMs and avoid information leakage.

This practice is implemented in 66.7% (=20/30) PMs for
login forms and all PMs for credit card forms. However,
seven out of the 20 PMs in login forms autofill credentials
on page load, which means that users may not notice the
rendered overlay that provides detailed information about
the form type. In personal information forms, only Firefox
and Safari notify users of the data type to be filled in
(e.g., “Autofill phone, address” in Safari). Edge browser and
Microsoft Autofill differentiate the information in rendered
pop-up overlays when the hidden fields are not filled.
Although these PMs behave better, as pointed out by Lin et
al. [27], the data type is presented at a coarse-grained level.
We also observe the same type of rendered overlay. For
example, Safari prompts “Autofill address” when it detects
the “City” field as visible. Thus, PM operators could provide
detailed and fine-grained prompts in the rendered overlay for
the data type to be filled into web forms.

2) A new perspective of countermeasure based on visual
language model (VLM). Considering the emergence of new
HTML or CSS properties that can be used to hide elements
from the web view (though not designed for this purpose),
inspecting the web page source code is a feasible but
complex approach, and may require continuous updates. We
propose a new perspective based on VLM to help PMs
avoid filling data into hidden fields. A browser extension
or other tools with screenshot permissions can capture
the screenshots of web forms, and then utilize the VLM
technique to identify the visible form fields and analyze the
data type to be filled. For example, using an open source
VLM CogVLM [64], PMs can identify fillable elements
within web pages and infer data types by providing prompts

like “Provide the number of web form input fields and the
filled data type” to the model.

Though the performance is relatively poor in the web
scenarios (about 18 seconds to handle a request using
the provided API [38]), the VLM technique is useful for
detecting fillable fields. Despite being highly resource-
intensive, which may further influence the usage rate of this
functionality [46], a dedicated model can more effectively
complete our task. Furthermore, Google has deployed an
image classifier to detect phishing websites, we believe
countermeasures based on VLM are practical and could
assist the visibility check method of PMs.

6. Discussion and Future Work
We now discuss the differences with Lin et al.’s work

[27], and provide the limitations and possible future work.
Differences between our work and Lin et al.’s work.
While our study and Lin et al.’s work [27] analyze the
privacy threats posed by the autofill functionality, our work
differs from it in three aspects. First, their work primarily
considers built-in-browser PMs, whereas our study primarily
focuses on separately-installed PMs, which are perceived
to be more secure [30], [48]. Furthermore, we extend our
analysis to compare the hidden field detection capabilities of
these two types of PMs. Second, while both studies consider
hidden fields in personal information and credit card forms,
our research investigates credential theft risks in login
forms. Third, we expand their considered eight concealment
techniques to 15 techniques, including new techniques like
clip-path and content-visibility, which effec-
tively hide fields but are not detected by PMs.
Limitations and Future Work. 1) Limited consideration of
concealment techniques: The fifteen concealment techniques
presented in Section 3.3 are either heuristic (7) or introduced
from Lin et al.’s work (8) [27]. Besides, for advanced
techniques such as clip-path, we only implement one
common property (i.e., clip-path:inset), and do not
test other properties (e.g., clip-path:circle) that can
be used to conceal elements. This indicates that our tests
may overlook the potentially effective concealment tech-
niques. Still, the privacy threats we have identified remain
significant, as new techniques may not be well considered by
PM operators (e.g., the content-visibility technique
is proposed in 2020, and all PMs fill passwords into hidden
<input> fields concealed by this method). We believe
it is necessary to propose a comprehensive and effective
detection mechanism for emerging techniques.

2) Only focus on the security perspective: Our paper
primarily discusses the autofill functionality from a security
perspective, emphasizing the privacy threats posed by filling
data into hidden fields. However, as responded by PM
operators, their practices balance performance, usability, and
security. Comprehensive checks for autofill functionality
may damage user experience. A user survey is necessary
to explore users’ perceptions of autofilling data into hidden
fields and whether security/privacy risks prevent users from
using the autofill functionality. We leave this as future work.

298

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

7. Related Work

We first review the research associated with the autofill
functionality of password managers (PMs). Then, we ex-
plore recent studies concerning the security and privacy
threats posed by malicious browser extensions.

7.1. Password Manager’s Autofill Functionality
We have summarized several works about the security

and privacy threats brought by the autofill functionality of
built-in-browser PMs [4], [27], [57] in Section 1, particularly
when facing hidden fields in web forms. Additionally,
previous research has examined the security and usability
of PMs’ autofill functionality. At IEEE S&P’21, Huaman et
al. [20] utilized public user reviews from Chrome browser
extensions and Github issues to investigate the interaction
issues between PMs and browsers. They revealed multiple
issues related to the autofill functionality, such as filling web
forms with additional elements (e.g., one-time-password)
and across different subdomains. Their work considered
hidden elements (see J-01 in Table III in their work [20])
but focused only on the display:none technique and the
potential effects on user interaction experience.

At ACSAC’21, Simmons et al. [53] systematized 17
PM use cases. They discussed three aspects of autofill
functionality: whether the autofill functionality requires user
interaction, autofill on different domains, and whether aut-
ofill requires a trusted pathway. They revealed that 50% of
desktop PMs and 8% of mobile PMs do not require user
interaction to autofill (i.e., weak user interaction as shown
in Table 1), which may bring severe privacy threats to users,
especially when hidden fields are filled.

At USENIX SEC’20, Oesch and Ruoti [41] conducted a
security evaluation on the autofill functionality, including
whether autofill requires user interaction, fills data into
iframes, fills forms that differ from the environment of
saved forms, and fills data into non-standard login fields.
Besides, they mentioned potential mitigation to protect
autofill from XSS attacks proposed by Stock and Johns [57].
This technique uses random nonces when filling forms and
replacing the values with passwords when transferring the
data. Recently, Gautam et al. [14] implemented an improved
design of this method to prevent malicious client-side scripts
and browser extensions from stealing filled data.

At USENIX SEC’14, Silver et al. [52] discussed the
threats of autofill functionality of four PMs, which are sus-
ceptible to sweep attacks where attackers inject JavaScript
code to webpages to retrieve passwords without user inter-
action. They also explored whether PMs autofill web forms
when the <input> field is invisible but only considering
display:none and opacity:0. At the same confer-
ence, Li et al. [26] conducted a security analysis of five PMs,
including attack scenarios where the autofill functionality
is triggered. In contrast, our main idea is not mitigating
web vulnerabilities such as XSS attacks, but highlights the
privacy threats brought by such autofill functionality, which
may autofill sensitive data into hidden fields.

7.2. Threats brought by Malicious Extensions

Recent studies [10], [44], [54], [55] have extensively dis-
cussed security and privacy issues stemming from malicious
browser extensions, including credential theft, user tracking,
advertisement injection, and remote code execution. Despite
efforts by web stores to implement security check mech-
anisms for extensions, well-designed malicious extensions
can often bypass the security checks, posing significant
security risks to users. Nayak et al. [39] identified that
malicious extensions could access filled password values
in login web pages and even pass through the Chrome
web store security check. At EuroS&P’23, Miguel et al.
[34] explored security issues arising from extensions ex-
ploiting Chrome DevTools Protocols, such as stealing user
information, monitoring network traffic (including the trans-
ferred credentials), and bypassing security interstitial pages.
Besides, at IEEE S&P’22, Agarwal et al. [5] highlighted
the risk of malicious extensions accessing credential stores
in PM extensions directly, driving the deployment of the
extension isolation mechanism in Chrome browsers. Thus,
it is now difficult for a malicious extension to directly access
the content of PM extensions.

In this paper, we consider attackers who can inject hidden
fields into web pages which only require limited privileges.
Note that our focus is on exploiting weaknesses in the
autofill functionality for handling hidden fields, that could
make data inadvertently be filled into hidden fields, bringing
severe privacy threats to users.

8. Conclusions
We have conducted the first empirical study on the effec-

tiveness of separately-installed password managers (PMs)
in detecting and handling hidden fields in web forms. We
reveal that leading PMs cannot effectively detect and handle
hidden fields concealed by twelve out of fifteen concealment
techniques. The most concerning is the login forms, which
have the highest filled probability 65.7% among the three
forms, and all 30 PMs autofill passwords into hidden fields
concealed by content-visibility and clip-path
properties. Coupled with the prevalence of weak user in-
teraction prompts during autofill (e.g., autofilling on page
load or providing nothing about the filled data type), these
vulnerabilities pose serious privacy threats to users. We hope
our findings and suggestions from the security perspective
could help PM operators improve their autofill functionality,
and better balance its security and usability as users are more
and more concerning their online privacy rights.

Acknowledgment
We appreciate anonymous reviewers for invaluable com-

ments. Ding Wang is the corresponding author. This research
was in part supported by the National Natural Science Foun-
dation of China under Grants Nos. 62222208 and 62172240,
and by the Fundamental Research Funds for the Central
Universities, Nankai University (Grant No. 63243154).

299

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

References

[1] 1Password’s Blue Ocean Strategy, 2022, https://bit.ly/482fYRR.

[2] Department of Justice Statement on the intrusion into the
Department’s Microsoft O365 email environment, Oct. 2022, https:
//bit.ly/40muAHY.

[3] G. Acar, No boundaries for user identities: Web trackers exploit
browser login managers, Dec. 2017, https://bit.ly/3JYGj8h.

[4] G. Acar, S. Englehardt, and A. Narayanan, “No boundaries: data
exfiltration by third parties embedded on web pages,” in Proc. PETS
2020, pp. 220–238.

[5] A. Agarwal, S. O’Connell, J. Kim, S. Yehezkel, D. Genkin, E. Ronen,
and Y. Yarom, “Spook.js: Attacking Chrome Strict Site Isolation via
Speculative Execution,” in Proc. IEEE S&P 2022, pp. 699–715.

[6] L. Autofill, LeakyAutofill-Artifact, Sep. 2024, https://bit.ly/4gQe9eN.

[7] Bitwarden, Bitwarden Security Whitepaper, 2024, https://bitwarden.
com/help/bitwarden-security-white-paper/.

[8] Canada.ca, Password Guidance, 2018, https://bit.ly/47dTBIf.

[9] CCPA, California Consumer Privacy Act (CCPA), Mar 2024, https:
//oag.ca.gov/privacy/ccpa.

[10] Q. Chen and A. Kapravelos, “Mystique: Uncovering information
leakage from browser extensions,” in Proc. ACM CCS 2018.

[11] Chrome-Stats, Chrome-Stats, 2024, https://chrome-stats.com/.

[12] CISA, Choosing and Protecting Passwords, Nov. 2019, https://bit.ly
/3tMqwEO.

[13] G. Developer, Puppeteer, 2024, https://pptr.dev/.

[14] A. Gautam, T. K. Yadav, K. Seamons, and S. Ruoti, “Passwords Are
Meant to Be Secret: A Practical Secure Password Entry Channel for
Web Browsers,” arXiv preprint arXiv:2402.06159, 2024.

[15] GDPR, Art. 5 GDPR Principles relating to processing of personal
data, 2024, https://gdpr.eu/article-5-how-to-process-personal-data/.

[16] B. Github, Bitwarden Clients App Browser, 2024, https://github.com
/bitwarden/clients/tree/main/apps/browser.

[17] Google, Chromium Code Search, 2024, https://source.chromium.org/.

[18] A. Hanamsagar, S. S. Woo, C. Kanich, and J. Mirkovic, “Leveraging
semantic transformation to investigate password habits and their
causes,” in Proc. CHI 2018, pp. 1–12.

[19] S. Hsu, M. Tran, and A. Fass, “What is in the Chrome Web Store?”
in Proc. ACM AsiaCCS 2024, pp. 1–14.

[20] N. Huaman, S. Amft, M. Oltrogge, Y. Acar, and S. Fahl, “They would
do better if they worked together: The case of interaction problems
between password managers and websites,” in Proc. IEEE S&P 2021.

[21] A. Hutchinson, J. Tang, A. J. Aviv, and P. Story, “Measuring the
Prevalence of Password Manager Issues Using In-Situ Experiments,”
in Proc. USEC 2024, pp. 1–27.

[22] I. Ion, R. Reeder, and S. Consolvo, “”...No one Can Hack My
Mind”: Comparing Expert and Non-Expert Security Practices,” in
Proc. SOUPS 2015, pp. 327–346.

[23] KeePassXC, KeePassXC Browser Extension, 2024, https://github.c
om/keepassxreboot/keepassxc-browser.

[24] Lastpass, The 3rd Annual Global Password Security Report, 2019,
https://bit.ly/4eSx2ff.

[25] LastPass, LastPass Technical Whitepaper, Aug. 2023, https://bit.ly
/4eTB9aU.

[26] Z. Li, W. He, D. Akhawe, and D. Song, “The Emperor’s New
Password Manager: Security Analysis of Web-based Password
Managers,” in Proc. USENIX SEC 2014, pp. 465–479.

[27] X. Lin, P. Ilia, and J. Polakis, “Fill in the blanks: Empirical analysis
of the privacy threats of browser form autofill,” in Proc. ACM CCS
2020, pp. 507–519.

[28] S. G. Lyastani, M. Schilling, S. Fahl, M. Backes, and S. Bugiel,
“Better managed than memorized? Studying the Impact of Managers
on Password Strength and Reuse,” in Proc. USENIX SEC 2018.

[29] K. Lyons, Hackers reportedly used a compromised password in
Colonial Pipeline cyberattack, June 2021, https://bit.ly/40kIsCw.

[30] P. Mayer, C. W. Munyendo, M. L. Mazurek, and A. J. Aviv,
“Why Users (Don’t) Use Password Managers at a Large Educational
Institution,” in Proc. USENIX SEC 2022, pp. 1849–1866.

[31] P. Mayer, Y. Zou, F. Schaub, and A. J. Aviv, “” Now I’m a bit angry:”
Individuals’ Awareness, Perception, and Responses to Data Breaches
that Affected Them.” in Proc. USENIX SEC 2021, pp. 393–410.

[32] P. Memberships, 1Password Security Design, Oct. 2023, https://1pas
swordstatic.com/files/security/1password-white-paper.pdf.

[33] Microsoft, Playwright enables reliable end-to-end testing for modern
web apps, 2024, https://playwright.dev/.

[34] J. M. Moreno, N. Vallina-Rodriguez, and J. Tapiador, “Chrowned by
an Extension: Abusing the Chrome DevTools Protocol through the
Debugger API,” in Proc. EuroS&P 2023, pp. 832–846.

[35] Mozilla, Fathom, 2019, https://mozilla.github.io/fathom/.

[36] mozilla, / - mozsearch, 2024, https://bit.ly/4exskDX.

[37] C. W. Munyendo, P. Mayer, and A. J. Aviv, ““I just stopped using one
and started using the other”: Motivations, Techniques, and Challenges
When Switching Password Managers,” in Proc. ACM CCS 2023.

[38] naklecha, CogVLM API, 2024, https://bit.ly/4esGOFl.

[39] A. Nayak, R. Khandelwal, E. Fernandes, and K. Fawaz, “Exper-
imental Security Analysis of Sensitive Data Access by Browser
Extensions,” in Proc. WWW 2024, pp. 1–12.

[40] NIST, “NIST SP 800-63B digital identity guidelines: Authentication
and lifecycle management,” Tech. Rep., June 2017.

[41] S. Oesch and S. Ruoti, “That Was Then, This Is Now: A Security
Evaluation of Password Generation, Storage, and Autofill in Browser-
Based Password Managers,” in Proc. USENIX SEC 2020.

[42] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential
stuffing: Password similarity models using neural networks,” in Proc.
IEEE S&P 2019, pp. 417–434.

[43] S. Pearman, J. Thomas, P. E. Naeini, H. Habib, L. Bauer, N. Christin,
L. F. Cranor, S. Egelman, and A. Forget, “Let’s Go in for a Closer
Look: Observing Passwords in Their Natural Habitat,” in Proc. ACM
CCS 2017, pp. 295–310.

[44] P. Picazo-Sanchez, B. Eriksson, and A. Sabelfeld, “No Signal Left to
Chance: Driving Browser Extension Analysis by Download Patterns,”
in Proc. ACSAC 2022, pp. 896–910.

[45] H. Ray, F. Wolf, R. Kuber, and A. J. Aviv, “Why older adults (Don’t)
use password managers,” in Proc. USENIX SEC 2021, pp. 73–90.

[46] G. S. Research, The probability of bounce increases 32% as page load
time goes from 1 second to 3 seconds, 2017, https://bit.ly/3ytGohR.

[47] P. SA, Passbolt Browser Extension, 2022, https://github.com/passbol
t/passbolt browser extension.

[48] P. Sarah, Z. Shikun, B. Lujo, and C. Nicolas, “Why people (don’t) use
password managers effectively,” in Proc. SOUPS 2019, pp. 319–338.

[49] S. Seiler-Hwang, P. A. Cabarcos, A. Marı́n, F. Almenáres, D. D.
Sánchez, and C. Becker, “”I don’t see why I would ever want to
use it”: Analyzing the Usability of Popular Smartphone Password
Managers,” in Proc. ACM CCS 2019, pp. 1937–1953.

[50] Selenium, The Selenium Browser Automation Project, 2024, https:
//selenium.dev/documentation/.

[51] A. Senol, G. Acar, M. Humbert, and F. Z. Borgesius, “Leaky Forms:
a study of email and password exfiltration before form submission,”
in Proc. USENIX SEC 2022, pp. 1813–1830.

[52] D. Silver, S. Jana, D. Boneh, E. Chen, and C. Jackson, “Password
managers: Attacks and defenses,” in Proc. USENIX SEC 2014.

300

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

[53] J. Simmons, O. Diallo, S. Oesch, and S. Ruoti, “Systematization
of Password ManagerUse Cases and Design Paradigms,” in Proc.
ACSAC 2021, pp. 528–540.

[54] A. Sjosten, S. V. Acker, P. Picazo-Sanchez, and A. Sabelfeld, “Latex
Gloves: Protecting Browser Extensions from Probing and Revelation
Attacks,” in Proc. NDSS 2019, pp. 1–15.

[55] D. F. Somé, “EmPoWeb: Empowering Web Applications with
Browser Extensions,” in Proc. IEEE S&P 2019, pp. 227–245.

[56] S. G. Stats, Desktop Browser Market Share Worldwide, 2024, https:
//gs.statcounter.com/browser-market-share/desktop/worldwide.

[57] B. Stock and M. Johns, “Protecting users against XSS-based password
manager abuse,” in Proc. ASIACCS 2014, pp. 183–194.

[58] S. Team, Password Manager Industry Report and Market Outlook
(2023-2024), Sep. 2023, https://bit.ly/3LVdB9A.

[59] A. Titterington, Dangerous browser extensions, Dec. 2023, https:
//bit.ly/3TR0ZEj.

[60] K. Viezelyte, Juggling security: How many passwords does the
average person have in 2024?, Apr. 2024, https://bit.ly/47YkyAr.

[61] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, name and bifacial-
security: Understanding passwords of Chinese web users,” in Proc.
USENIX SEC 2019, pp. 1537–1555.

[62] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online
password guessing: An underestimated threat,” in Proc. ACM CCS
2016, pp. 1242–1254.

[63] D. Wang, Y. Zou, Y.-A. Xiao, S. Ma, and X. Chen, “Pass2Edit:
A Multi-Step Generative Model for Guessing Edited Passwords,” in
Proc. USENIX SEC 2023, pp. 983–1000.

[64] W. Wang, Q. Lv, W. Yu, W. Hong, J. Qi, Y. Wang, J. Ji, Z. Yang,
L. Zhao, X. Song et al., “Cogvlm: Visual expert for pretrained
language models,” arXiv preprint arXiv:2311.03079, 2023.

[65] web.dev, Autofill, Dec. 2021, https://web.dev/learn/forms/autofill.

[66] O. Williams, This could be the iCloud flaw that led to celebrity photos
being leaked, Sep. 2014, https://bit.ly/47bwflO.

Appendix
A. Lin et al’s Concealment Techniques

At ACM CCS’20, Lin et al. [27] introduced eight proper-
ties and techniques that can be utilized to conceal HTML el-
ements. They conduct experiments on six popular browsers,
testing whether each browser would autofill form elements
whose presence is concealed using the respective techniques.
Their findings reveal that five of the eight techniques (ex-
cluding the CSS display and visibility property) are effective
against all major browsers evaluated. Here, we briefly de-
scribe the eight element concealment techniques introduced
by Lin et al., focusing specifically on the <input> element.

CSS display property. One of the simplest obfuscation
approaches involves setting the CSS display property
of the target element to none, which completely removes
the element and the space it occupies from the rendered
page, as if it never existed. This property also influences
the appearance of its child elements.

CSS visibility property. The visibility property spec-
ifies whether an element is visible, with the hidden value
causing the element to become imperceptible while reserv-
ing its original layout space and position. The collapse
value exhibits the same behavior for input elements. Like
the display property, this property can also cause effects on

its child elements. In this work, we regard the two properties
as separate techniques, as PMs may behave differently when
setting visibility to different values.

CSS opacity property. By setting the opacity property
to 0, the element becomes fully transparent and thus in-
visible to the user, though it maintains its positioned space.
Although the opacity property is inheritable, the effective
opacity of a child element is determined by the product of
its own opacity value and that of its ancestors.

Covered by overlay. This deceptive tactic involves posi-
tioning a non-transparent overlay element atop the target
element, effectively concealing it from the web page view.

Non-effective size. Rendering the element invisible by
specifying a non-effective size, achieved by setting its width
or height to zero. However, this property has no effect on
its child elements by default. Thus, we only consider the
property’s influence on the <input> fields instead of its
ancestor elements.

Off-screen placement. Web elements with fixed or abso-
lute positioning can be hidden by displacing them outside
the visible device screen area using the top, bottom, left,
and right properties.

Ancestor’s overflow. This approach involves positioning
the target element outside the bounds of its ancestor’s
visible overflow area, making it imperceptible. For ex-
ample, one could set the ancestor’s height/width to zero
or adjusting the target’s positioning while specifying the
overflow:hidden property on the ancestor element.

Lin et al.’s work [27] reveals that concealment tech-
niques except hidden and visibility works in all the
browsers. They also present that their considered techniques
are most likely not exhaustive and other techniques for
hiding <input> fields may be feasible.

We consider the above eight techniques introduced by
Lin et al. [27], and incorporate seven additional techniques
to conduct our experiments. Furthermore, we include the
six browsers evaluated by Lin et al. in our experiments to
compare the effectiveness of separately-installed PMs and
built-in-browser PMs. This also allows us to assess whether
major browsers have made improvements in addressing this
issue over the past four years.

B. Various autofill functionality

Autofill functionality works via detecting web forms and
fields, and then determines which data should be filled
into forms. For instance, a login form with username and
password fields needs to be filled with credentials, while a
signup form with name and telephone generally needs to be
filled with user information. Besides, different PMs perform
variously in triggering the autofill functionality. For in-
stance, Chrome’s built-in-browser PM defaults to autofill in
username and password fields on page load (see Figure
6(a)), whereas filling credit card details requires clicking on
the respective web form field such as card-name field (see
Figure 6(b)). Conversely, 1Password [32] requires a click on
the username field to autofill username and password into
the login form (see Figure 6(c)), and displays a confirmation

301

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

ALL PII Form CVV Form Login Form
Web Form Types

0%

15%

30%

45%

60%

75%

90%

Pr
op

or
tio

n
Not Filled (EXTENSION)
Not Filled (BROWSER)

Filled (EXTENSION)
Filled (BROWSER)

Not Filled (EXTENSION)
Not Filled (BROWSER)

Filled (EXTENSION)
Filled (BROWSER)

(a) Filled results between separately-installed
(Extension) and built-in-browser (Browser) PMs.

ALL Extension Browser
Password Manager Types

0%

15%

30%

45%

60%

75%

90%

Pr
op

or
tio

n

Not Filled (PII)
Not Filled (CVV)
Not Filled (Login)

Filled (PII)
Filled (CVV)
Filled (Login)

Not Filled (PII)
Not Filled (CVV)
Not Filled (Login)

Filled (PII)
Filled (CVV)
Filled (Login)

(b) Filled results across personal information (PII),
credit card (CVV), and login (Login) forms.

Display:None

Visib
ility

:Hidden

Visib
ility

:Collapse
Opacity

:0

Covered-By-Overlay

Off-Screen

Ancestor-Overflow
Hidden

CSS-Clip

CSS-ClipPath

CSS-Tra
nsform

Font-Size-0

Content-Visib
ility

<input> Field Concealment Techniques

0%

15%

30%

45%

60%

75%

90%

Pr
op

or
tio

n

PII Form
CVV Form
Login Form

PII Form
CVV Form
Login Form

(c) Filled percentage in each kind of web form
under various concealment technique.

Figure 5: Analysis for experimental results when <input> elements are invisible due to their ancestor elements’ property.

m.smith@gmail.com

m.smith@gmail.com

Manage passwords

(a) Credentials (Chrome).

Name on card

Michael’s Card
1234 **** **** 7890
Manage payments

(b) Credit cards (Chrome).

username/tel/email

Michael Smith
m.smith@gmail.com

(c) Credentials (1Password).

Name on card

Michael’s Card
1234 **** **** 7890

example.com show
Click OK to fill your 1Password item on example.com

Confirm Cancel

(d) Credit cards (1Password).

Figure 6: Autofill functionality of Chrome and 1Password.

prompt before filling in credit card details (see Figure 6(d)).
One common feature of existing autofill functionality is that,
once the autofill functionality is triggered, the PM fills in
every detected field in the web form using stored data.

C. Visibility Impact of Ancestor Nodes
We now report the experimental results of autofilling data

into <input> fields that are rendered invisible due to their
ancestor elements (e.g., <div> elements) being hidden. We
conduct these experiments as our case studies in Sec. 4.5
find that PMs may only consider the property of <input>
elements. The detailed results are in Table 3 and Figure
5. Non-effective or tiny size of ancestor elements does not
influence the width of its child elements unless the value of
child elements is set using relative length unit (e.g., em). If
we only set the ancestor element’s width or height to a non-
effective size, the inner <input> element with an absolute
length remains visible. Thus, we do not consider these two
techniques for ancestor elements. As done in Section 4,
we conduct the χ2 test to explore the influences of PM
types, web form types, and concealment techniques on filled
results. The hypothesis of each analysis is the same.

The χ2 test demonstrates that the null hypothesis H0

in each analysis is rejected and thus the filled probability
significantly differs between two PM types (χ2=42.435,
p<0.01), three web forms (χ2=25.878, p<0.01), and thir-
teen concealment techniques (χ2=169.76, p<0.01). Further
binary logistic regression test presents that built-in-browser

PMs are 2.95 times more likely to fill data into hidden
fields than separately-installed PMs. Login forms are the
most vulnerable and PMs behave best on credit card forms.
Three concealment techniques including display:none,
visibility:hidden, and HTML hidden property are
properly detected and handled by most PMs.
Comparison with filled probability where <input>
fields are invisible due to ancestor elements. We com-
pare the filled probability between cases where <input>
fields are directly configured to be invisible from the web
page and those are influenced by their ancestor elements.
Since we only consider the non-effective-size and
tiny-size properties for <input> fields, we select the
remaining 13 concealment techniques for comparison. We
use the χ2 test to evaluate whether the filled probability
between the two concealment objects is significantly differ-
ent. Our hypothesis is as follows: H0: The filled probability
has no significant relationship with how the <input>
field is hidden; Ha: The filled probability has a significant
relationship with how the <input> field is hidden.

Finally, we fail to reject the null hypothesis (χ2=0.021,
p=0.885>0.05), and accept that the filled probability does
not have a significant difference between two concealment
objects. Still, four concealment techniques have over five
PMs that differ in at least one web form, and 23 PMs
have at least one different case (see Tables 2 and 3).
Our results indicate most PMs consider the influence of
ancestor elements. For content-visibility, the filled
probability has a significant decrement compared with cases
in which <input> fields are configured with this property.
We hypothesize that this is because the property is not
typically applied to <input> fields directly, and most PMs
do not consider this property. However, when applying this
property to ancestor elements (e.g., a <div> element), this
property functions as intended and is therefore considered
by ten PMs, including four chromium-based browsers.

D. Detailed filled probability in our experiments
We have provided the detailed filled probability of differ-

ent password manager types, web form types, and conceal-
ment techniques in Tables 4 and 5. The filled probability
is used for drawing our Figures 4 and 5. For instance, for
separately-installed PMs in login forms, the filled probabil-
ity in Figure 4(a) is the number of filled instances (213)
divided by all 360 instances in Table-2 (213/360=59.17%).

302

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

TABLE 3: Results for our autofill testing experiments, where <input> fields are hidden due to its ancestor elements∗.

Form Type Personal Information Credit Card Login Information

Concealment Tech. D
is

pl
ay

:N
on

e

V
is

ib
ili

ty
:H

id
de

n

V
is

ib
ili

ty
:C

ol
la

ps
e

O
pa

ci
ty

:0

C
ov

er
ed

by
O

ve
rl

ay

O
ff

-S
cr

ee
n

A
nc

es
to

r-
O

ve
rfl

ow

H
id

de
n

C
SS

C
lip

C
SS

C
lip

-P
at

h

C
SS

Tr
an

sf
or

m

Fo
nt

Si
ze

:0

C
on

te
nt

-V
is

ib
ili

ty

D
is

pl
ay

:N
on

e

V
is

ib
ili

ty
:H

id
de

n

V
is

ib
ili

ty
:C

ol
la

ps
e

O
pa

ci
ty

:0

C
ov

er
ed

by
O

ve
rl

ay

O
ff

-S
cr

ee
n

A
nc

es
to

r-
O

ve
rfl

ow

H
id

de
n

C
SS

C
lip

C
SS

C
lip

-P
at

h

C
SS

Tr
an

sf
or

m

Fo
nt

Si
ze

:0

C
on

te
nt

-V
is

ib
ili

ty

D
is

pl
ay

:N
on

e

V
is

ib
ili

ty
:H

id
de

n

V
is

ib
ili

ty
:C

ol
la

ps
e

O
pa

ci
ty

:0
C

ov
er

ed
by

O
ve

rl
ay

O
ff

-S
cr

ee
n

A
nc

es
to

r-
O

ve
rfl

ow

H
id

de
n

C
SS

C
lip

C
SS

C
lip

-P
at

h

C
SS

Tr
an

sf
or

m

Fo
nt

Si
ze

:0
C

on
te

nt
-V

is
ib

ili
ty

LastPass × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ × ✓ ×2 ×2 ✓ ✓ ✓ ✓ ✓ ×2 ✓ ✓ ✓ ×2 ✓ × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ × ✓
Avira - × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓
Norton - - - - - - - - - - - - - × × ✓ ✓ ✓ × × × ✓ ✓ × ✓ × × × ✓ ✓ ✓ × × × ✓ ✓ × ✓ ×
1Password × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ ×2 ×2 ✓ ✓ ✓ ✓ ✓ ×2 ✓ ✓ ×2 ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓ ✓
Bitwarden × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Kaspersky ×3 × × × ✓ ✓ × ✓ × ✓ ✓ × ✓ ✓
Dashlane × × × × ✓ × × × ✓ ✓ × ✓ ✓ × × × × ✓ × × × ✓ ✓ × ✓ ✓ × × × × ✓ × × × ✓ ✓ × ✓ ✓
iCloud - × × × ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓
Keeper ×2 ×2 ✓ ×2 ✓ ✓ ✓ ×2 ✓ ✓ ×2 ×2 ✓ × × ✓ × ✓ ✓ ✓ × ✓ ✓ × × ✓ × × ✓ × ✓ ✓ ✓ × ✓ ✓ × × ✓
MultiPassword - × × ✓ ✓ ✓ × ✓ × ✓ ✓ ✓ ✓ ✓
True Key - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
RoboForm × × × × × × × × ✓ × × ✓ × ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ✓ ×2 × × × × × × × × × × × ✓ ×
DualSafe - × × × × ✓ ✓ ✓ × ✓ ✓ × ✓ ✓
NordPass(Desktop) × ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 × ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓
ExpressVPN Keys - - - - - - - - - - - - - ✓ × ✓ × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
Dropbox - - - - - - - - - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓
KeePassXC - ×2 ×2 ×2 ✓ ✓ ×2 ×2 ×2 ✓ ✓ ×2 ×2 ✓
NordPass(Extension) × ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 ×3 × ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓
Passbolt - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Proton Pass - × × ✓ ✓ ✓ × × × ✓ ✓ × × ✓
Microsoft Autofill ✓ × × ✓ ✓ ✓ × × × ✓ ✓ ✓ ✓ ✓
Zoho Vault - - - - - - - - - - - - - ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × ✓ × × × × × × × × ×
Enpass × × ✓ ✓ ✓ × × × ✓ ✓ × ✓ ✓ × × × ✓ × × × × × × × × × × × ✓ ✓ ✓ × × × ✓ ✓ × ✓ ✓
SafeInCloud - - - - - - - - - - - - - ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓

Chrome × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Edge × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Safari × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ -1 ×2 ×2 ×2 ✓ ✓ ✓ ✓ ×2 ✓ ✓ ✓ ✓ -1 × × × ✓ ✓ × ✓ × ✓ ✓ ✓ ✓ -1
Firefox ✓
Opera × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Brave × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × × × × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

* Cell in light purple background means that the filled results is different from cases when the <input> field is directly hidden in Table 2. Other notifications are the same as Table 2.

TABLE 4: Detailed filled probability in our experiments among different password managers and web forms∗.
Hidden Object Input Element Ancestor Element

Form Type PII CVV Login All PII CVV Login All

Extension 50.9% (=84/165) 38.8% (=93/240) 59.2% (=213/360) 51.0% (=390/765) 51.7% (=74/143) 41.3% (=86/208) 61.9% (=193/312) 53.2% (=353/663)
Browser 75.3% (=67/89) 75.3% (=67/89) 92.1% (=82/89) 80.9% (=216/267) 68.8% (=53/77) 68.8% (=53/77) 93.5% (=72/77) 77.1% (=178/231)

Summary 59.4% (=151/254) 48.6% (=160/329) 65.7% (=295/449) 58.7% (=606/1032) 57.7% (=127/220) 48.8% (=139/285) 68.1% (=265/389) 59.4% (=531/894)

* Extension for separately-installed password managers; Browser for built-in-browser PMs. PII for personal information forms, CVV for credti card forms, and Login for login forms.

TABLE 5: Detailed filled probability in our experiments among different concealment techniques∗.
Hidden Object Input Element Ancestor Element

Form Type PII CVV Login PII CVV Login

Display: None 11.8% (=2/17) 18.2% (=4/22) 26.7% (=8/30) 11.8% (=2/17) 22.7% (=5/22) 30.0% (=9/30)
Visibility: Hidden 23.5% (=4/17) 18.2% (=4/22) 33.3% (=10/30) 23.5% (=4/17) 18.2% (=4/22) 33.3% (=10/30)
Visibility: Collapse 47.1% (=8/17) 40.9% (=9/22) 73.3% (=22/30) 47.1% (=8/17) 40.9% (=9/22) 70.0% (=21/30)
Opacity: 0 70.6% (=12/17) 50.0% (=11/22) 66.7% (=20/30) 70.6% (=12/17) 59.1% (=13/22) 83.3% (=25/30)
Covered by Overlay 88.2% (=15/17) 72.7% (=16/22) 96.7% (=29/30) 82.4% (=14/17) 68.2% (=15/22) 93.3% (=28/30)
Non-Effectiveness-Size 52.9% (=9/17) 40.9% (=9/22) 50.0% (=15/30) -
Off-Screen 58.8% (=10/17) 45.5% (=10/22) 50.0% (=15/30) 70.6% (=12/17) 54.5% (=12/22) 56.7% (=17/30)
Ancestor-Overflow 82.4% (=14/17) 59.1% (=13/22) 83.3% (=25/30) 70.6% (=12/17) 54.5% (=12/22) 66.7% (=20/30)
Hidden 11.8% (=2/17) 18.2% (=4/22) 23.3% (=7/30) 11.8% (=2/17) 22.7% (=5/22) 30.0% (=9/30)
CSS Clip 70.6% (=12/17) 54.5% (=12/22) 80.0% (=24/30) 88.2% (=15/17) 68.2% (=15/22) 93.3% (=28/30)
CSS Clip-Path 88.2% (=15/17) 72.7% (=16/22) 100.0% (=30/30) 82.4% (=14/17) 68.2% (=15/22) 93.3% (=28/30)
CSS Transform 64.7% (=11/17) 54.5% (=12/22) 70.0% (=21/30) 58.8% (=10/17) 50.0% (=11/22) 63.3% (=19/30)
Font Size: 0 70.6% (=12/17) 59.1% (=13/22) 73.3% (=22/30) 76.5% (=13/17) 63.6% (=14/22) 83.3% (=25/30)
Content-Visibility 93.8% (=15/16) 81.0% (=17/21) 100.0% (=29/29) 56.3% (=9/16) 42.9% (=9/21) 89.7% (=26/29)
Tiny Size 58.8% (=10/17) 45.5% (=10/22) 60.0% (=18/30) -

* PII for personal information forms, CVV for credti card forms, and Login for login forms. Our work considers 15 concealment techniques for <input> elements and 13 for ancestors.

303

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 08,2025 at 05:39:37 UTC from IEEE Xplore. Restrictions apply.

